908 resultados para In silico approach
Resumo:
TCRep 3D is an automated systematic approach for TCR-peptide-MHC class I structure prediction, based on homology and ab initio modeling. It has been considerably generalized from former studies to be applicable to large repertoires of TCR. First, the location of the complementary determining regions of the target sequences are automatically identified by a sequence alignment strategy against a database of TCR Vα and Vβ chains. A structure-based alignment ensures automated identification of CDR3 loops. The CDR are then modeled in the environment of the complex, in an ab initio approach based on a simulated annealing protocol. During this step, dihedral restraints are applied to drive the CDR1 and CDR2 loops towards their canonical conformations, described by Al-Lazikani et. al. We developed a new automated algorithm that determines additional restraints to iteratively converge towards TCR conformations making frequent hydrogen bonds with the pMHC. We demonstrated that our approach outperforms popular scoring methods (Anolea, Dope and Modeller) in predicting relevant CDR conformations. Finally, this modeling approach has been successfully applied to experimentally determined sequences of TCR that recognize the NY-ESO-1 cancer testis antigen. This analysis revealed a mechanism of selection of TCR through the presence of a single conserved amino acid in all CDR3β sequences. The important structural modifications predicted in silico and the associated dramatic loss of experimental binding affinity upon mutation of this amino acid show the good correspondence between the predicted structures and their biological activities. To our knowledge, this is the first systematic approach that was developed for large TCR repertoire structural modeling.
Resumo:
There is genetic evidence of similarities and differences among autoimmune diseases (AIDs) that warrants looking at a general panorama of what has been published. Thus, our aim was to determine the main shared genes and to what extent they contribute to building clusters of AIDs. We combined a text-mining approach to build clusters of genetic concept profiles (GCPs) from the literature in MedLine with knowledge of protein-protein interactions to confirm if genes in GCP encode proteins that truly interact. We found three clusters in which the genes with the highest contribution encoded proteins that showed strong and specific interactions. After projecting the AIDs on a plane, two clusters could be discerned: Sjögren’s syndrome—systemic lupus erythematosus, and autoimmune thyroid disease—type1 diabetes—rheumatoid arthritis. Our results support the common origin of AIDs and the role of genes involved in apoptosis such as CTLA4, FASLG, and IL10.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Adjuvants are substances that boost the protective immune response to vaccine antigens. The majority of known adjuvants have been identified through the use of empirical approaches. Our aim was to identify novel adjuvants with well-defined cellular and molecular mechanisms by combining a knowledge of immunoregulatory mechanisms with an in silico approach. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) inhibit the protective immune responses to vaccines by suppressing the activation of antigen presenting cells such as dendritic cells (DCs). In this chapter, we describe the identification and functional validation of small molecule antagonists to CCR4, a chemokine receptor expressed on Tregs. The CCR4 binds the chemokines CCL22 and CCL17 that are produced in large amounts by activated innate cells including DCs. In silico identified small molecule CCR4 antagonists inhibited the migration of Tregs both in vitro and in vivo and when combined with vaccine antigens, significantly enhanced protective immune responses in experimental models.
Resumo:
The current drug options for the treatment of chronic Chagas disease have not been sufficient and high hopes have been placed on the use of genomic data from the human parasite Trypanosoma cruzi to identify new drug targets and develop appropriate treatments for both acute and chronic Chagas disease. However, the lack of a complete assembly of the genomic sequence and the presence of many predicted proteins with unknown or unsure functions has hampered our complete view of the parasite's metabolic pathways. Moreover, pinpointing new drug targets has proven to be more complex than anticipated and has revealed large holes in our understanding of metabolic pathways and their integrated regulation, not only for this parasite, but for many other similar pathogens. Using an in silicocomparative study on pathway annotation and searching for analogous and specific enzymes, we have been able to predict a considerable number of additional enzymatic functions in T. cruzi. Here we focus on the energetic pathways, such as glycolysis, the pentose phosphate shunt, the Krebs cycle and lipid metabolism. We point out many enzymes that are analogous to those of the human host, which could be potential new therapeutic targets.
Resumo:
Blood-brain barrier (BBB) permeation is an essential property for drugs that act in the central nervous system (CNS) for the treatment of human diseases, such as epilepsy, depression, Alzheimer's disease, Parkinson disease, schizophrenia, among others. In the present work, quantitative structure-property relationship (QSPR) studies were conducted for the development and validation of in silico models for the prediction of BBB permeation. The data set used has substantial chemical diversity and a relatively wide distribution of property values. The generated QSPR models showed good statistical parameters and were successfully employed for the prediction of a test set containing 48 compounds. The predictive models presented herein are useful in the identification, selection and design of new drug candidates having improved pharmacokinetic properties.
Resumo:
Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.
Resumo:
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.
Resumo:
PhD thesis in Bioengineering
Resumo:
Metabolic problems lead to numerous failures during clinical trials, and much effort is now devoted in developing in silico models predicting metabolic stability and metabolites. Such models are well known for cytochromes P450 and some transferases, whereas little has been done to predict the hydrolytic activity of human hydrolases. The present study was undertaken to develop a computational approach able to predict the hydrolysis of novel esters by human carboxylesterase hCES1. The study involves both docking analyses of known substrates to develop predictive models, and molecular dynamics (MD) simulations to reveal the in situ behavior of substrates and products, with particular attention being paid to the influence of their ionization state. The results emphasize some crucial properties of the hCES1 catalytic cavity, confirming that as a trend with several exceptions, hCES1 prefers substrates with relatively smaller and somewhat polar alkyl/aryl groups and larger hydrophobic acyl moieties. The docking results underline the usefulness of the hydrophobic interaction score proposed here, which allows a robust prediction of hCES1 catalysis, while the MD simulations show the different behavior of substrates and products in the enzyme cavity, suggesting in particular that basic substrates interact with the enzyme in their unprotonated form.
Resumo:
ACuteTox is a project within the 6th European Framework Programme which had as one of its goals to develop, optimise and prevalidate a non-animal testing strategy for predicting human acute oral toxicity. In its last 6 months, a challenging exercise was conducted to assess the predictive capacity of the developed testing strategies and final identification of the most promising ones. Thirty-two chemicals were tested blind in the battery of in vitro and in silico methods selected during the first phase of the project. This paper describes the classification approaches studied: single step procedures and two step tiered testing strategies. In summary, four in vitro testing strategies were proposed as best performing in terms of predictive capacity with respect to the European acute oral toxicity classification. In addition, a heuristic testing strategy is suggested that combines the prediction results gained from the neutral red uptake assay performed in 3T3 cells, with information on neurotoxicity alerts identified by the primary rat brain aggregates test method. Octanol-water partition coefficients and in silico prediction of intestinal absorption and blood-brain barrier passage are also considered. This approach allows to reduce the number of chemicals wrongly predicted as not classified (LD50>2000 mg/kg b.w.).
Resumo:
Background: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). Results: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. Conclusion: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models.
Resumo:
Diabetes is a worldwide health issue that has been expanding mainly in developed countries. It is characterized by abnormal levels of blood sugar due to several factors. The most common are resistance to insulin and the production of defective insulin which exerts little or no effect. Its most common symptoms include tissue damage to several systems due to elevated levels of blood sugar. One of the key enzymes in hydrocarbon metabolism is α-glucosidase (EC 3.2.1.20). It catalyzes the breakdown of complex carbohydrates into their respective monomers (glucose) which allows them to be absorbed. In this work, caffeoyl quinic acids and their metabolites were analyzed as potential inhibitors for α-glucosidase. The search for the best inhibitor was conducted using molecular docking. The affinity of each compound was compared to the inhibitor present in the crystal structure of the protein. As no inhibitor with a similar affinity was´found, a new approach was used, in situ drug design. It was not possible to achieve an inhibitor capable of competing with the one present in the crystal structure of the enzyme, which is also its current commercial inhibitor. It is possible to draw some conclusions as to which functional groups interact best with certain residues of the active site. This work was divided into three main sections. The first section, Diabetes, serves as an introduction to what is Diabetes, its symptoms and/or side effects and how caffeoyl quinic acids could be used as a treatment. The second section, Caffeoylquinic acids and their metabolites as inhibitors for Alfa-glucosidase, corresponds to the search through molecular docking of caffeoyl quinic acids as inhibitors for α-glucosidase and what was possible to draw from this search. The last section, In situ design of an inhibitor for α-glucosidase (EC 3.2.1.20), corresponds to the in situ drug design study and what it achieved. The representation of each of the molecules used as a ligand can be found in the Annexes.
Resumo:
Sugarcane is one of the most important products of the world and Brazil is responsible for 25 % of the world production. One problem of this culture at northeast of Brazil is the early flowering. In our laboratory, it has been made before four subtractive libraries using early and late flowering genotypes in order to identify messages related to the flowering process. In this work, two cDNAs were chosen to make in silico analysis and overexpression constructs. Another approach to understand the flowering process in sugarcane was to use proteomic tools. First, the protocol for protein extraction using apical meristem was set up. After that, these proteins were separated on two bidimensional gels. It was possible to observe some difference for some regions of these gels as well as some proteins that can be found in all conditions. The next step, spots will be isolated and sequence on MS spectrometry in order to understand this physiological process in sugarcane