990 resultados para Immune selection
Resumo:
The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.
Resumo:
BACKGROUND: All site-specific interactions between HIV type-1 (HIV-1) subtype, human leukocyte antigen (HLA)-associated immune selection and integrase inhibitor resistance are not completely understood. We examined naturally occurring polymorphisms in HIV-1 integrase sequences from 342 antiretroviral-naive individuals from the Western Australian HIV Cohort Study and the Swiss HIV Cohort Study. METHODS: Standard bulk sequencing and sequence-based typing were used to generate integrase sequences and high-resolution HLA genotypes, respectively. Viral residues were examined with respect to drug resistance mutations and CD8(+) T-cell escape mutations. RESULTS: In both predominantly subtype B cohorts, 12 of 38 sites that mediate integrase inhibitor resistance mutations were absolutely conserved, and these included the primary resistance mutations. There were 18 codons with non-primary drug resistance-associated substitutions at rates of up to 58.8% and eight sites with alternative polymorphisms. Five viral residues were potentially subject to dual-drug and HLA-associated immune selection in which both selective pressures either drove the same amino acid substitution (codons 72, 157 and 163) or HLA alleles were associated with an alternative polymorphism that would alter the genetic barrier to resistance (codons 125 and 193). The common polymorphism T125A, which was characteristic of non-subtype B and was also associated with carriage of HLA-B*57/*5801, increased the mutational barrier to the resistance mutation T125K. CONCLUSIONS: Primary integrase inhibitor resistance mutations were not detected in the absence of drug exposure in keeping with sites of high constraint. Viral polymorphisms caused by immune selection and/or associated with non-subtype B might alter the genetic barrier to some non-primary resistance-associated mutations.
Resumo:
Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A-G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG(1) b12, 2G12, 2F5 and 4E10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (T-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (PS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. These results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development.
Resumo:
Phylogenetic analysis of the sequence of the H gene of 75 measles virus (MV) strains (32 published and 43 new sequences) was carried out. The lineage groups described from comparison of the nucleotide sequences encoding the C-terminal regions of the N protein of MV were the same as those derived from the H gene sequences in almost all cases. The databases document a number of distinct genotype switches that have occurred in Madrid (Spain). Well-documented is the complete replacement of lineage group C2, the common European genotype at that time, with that of group D3 around the autumn of 1993. No further isolations of group C2 took place in Madrid after this time. The rate of mutation of the H gene sequences of MV genotype D3 circulating in Madrid from 1993 to 1996 was very low (5 x 10(-4) per annum for a given nucleotide position). This is an order of magnitude lower than the rates of mutation observed in the HN genes of human influenza A viruses. The ratio of expressed over silent mutations indicated that the divergence was not driven by immune selection in this gene. Variations in amino acid 117 of the H protein (F or L) may be related to the ability of some strains to haemagglutinate only in the presence of salt. Adaptation of MV to different primate cell types was associated with very small numbers of mutations in the H gene. The changes could not be predicted when virus previously grown in human B cell lines was adapted to monkey Vero cells. In contrast, rodent brain-adapted viruses displayed a lot of amino acid sequence variation from normal MV strains. There was no convincing evidence for recombination between MV genotypes.
Resumo:
Plasmodium falciparum, the causative agent of human malaria, invades host erythrocytes using several proteins on the surface of the invasive merozoite, which have been proposed as potential vaccine candidates. Members of the multi-gene PfRh family are surface antigens that have been shown to play a central role in directing merozoites to alternative erythrocyte receptors for invasion. Recently, we identified a large structural polymorphism, a 0.58 Kb deletion, in the C-terminal region of the PfRh2b gene, present at a high frequency in parasite populations from Senegal. We hypothesize that this region is a target of humoral immunity. Here, by analyzing 371 P. falciparum isolates we show that this major allele is present at varying frequencies in different populations within Senegal, Africa, and throughout the world. For allelic dimorphisms in the asexual stage antigens, Msp-2 and EBA-175, we find minimal geographic differentiation among parasite populations from Senegal and other African localities, suggesting extensive gene flow among these populations and/or immune-mediated frequency-dependent balancing selection. In contrast, we observe a higher level of inter-population divergence (as measured by F(st)) for the PfRh2b deletion, similar to that observed for SNPs from the sexual stage Pfs45/48 loci, which is postulated to be under directional selection. We confirm that the region containing the PfRh2b polymorphism is a target of humoral immune responses by demonstrating antibody reactivity of endemic sera. Our analysis of inter-population divergence suggests that in contrast to the large allelic dimorphisms in EBA-175 and Msp-2, the presence or absence of the large PfRh2b deletion may not elicit frequency-dependent immune selection, but may be under positive immune selection, having important implications for the development of these proteins as vaccine candidates. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pre-treatment HCV quasispecies complexity and diversity may predict response to interferon based anti-viral therapy. The objective of this study was to retrospectively (1) examine temporal changes in quasispecies prior to the start of therapy and (2) investigate extensively quasispecies evolution in a group of 10 chronically infected patients with genotype 3a, treated with pegylated alpha 2a-Interferon and ribavirin. The degree of sequence heterogeneity within the hypervariable region 1 was assessed by analyzing 20-30 individual clones in serial serum samples. Genetic parameters, including amino acid Shannon entropy, Hamming distance and genetic distance were calculated for each sample. Treatment outcome was divided into (1) sustained virological responders (SVR) and (2) treatment failure (TF).Our results indicate, (1) quasispecies complexity and diversity are lower in the SVR group, (2) quasispecies vary temporally and (3) genetic heterogeneity at baseline can be used to predict treatment outcome. We discuss the results from the perspective of replicative homeostasis. We discuss the results from the perspective of replicative homeostasis.
Resumo:
Les virus influenza de type A sont des pathogènes respiratoires causant des épidémies saisonnières et des pandémies de manière plus occasionnelles. Au cours d’une saison, 10 à 20 % de la population mondiale est touchée, ce qui constitue un problème majeur de santé publique. Les virus de sous-type A/H3N2 sont associés à une plus forte morbidité et mortalité que les virus de sous-type A/H1N1. La vaccination reste le moyen le plus efficace de contrôler les infections, cependant l’efficacité de ces vaccins est de courte durée et compromise en cas de non-appariemment entre les souches circulantes et vaccinales. La première partie de cette thèse a été consacrée à l’optimisation des vaccins inactivés A/H3N2 en testant de nouveaux adjuvants et de nouvelles voies d’administration chez la souris et le furet. Nous avons démontré que l’adjuvant AS25 semble prometteur pour le développement de vaccins plus efficaces. La seconde partie de cette thèse a été consacrée à suivre l’évolution moléculaire et antigénique des souches A/H3N2 circulantes au Québec entre 2009 et 2011. Notre conclusion est qu’il n’y a pas que le nombre de mutations dans la HA qui est important, en ce sens que la nature et la localisation de ces dernières jouent un rôle clé lors d’une dérive antigénique. Après avoir suivi les souches A/H3N2 sous pression immunitaire, nous avons suivi dans la troisième partie de cette thèse une souche A/H3N2 sous pression d’un nouvel antiviral; le laninamivir. Les antiviraux sont la première ligne de défense en cas de pandémie ou lors d’une épidémie lorsqu’il y a un mésappariemment entre les souches circulante et vaccinale. Notre conclusion est que la réplication de notre mutant est conservé in vitro mais non in vivo. Les différentes expériences effectuées au cours de cette thèse ont permis de suivre l’évolution des souches A/H3N2 et de mettre en œuvre de nouveaux moyens de prévention et de traitement.
Resumo:
Journal Article
Resumo:
Several insect species show an increase in cuticular melanism in response to high densities. In some species, there is evidence that this melanism is correlated with an up-regulation of certain immune system components, particularly phenoloxidase (PO) activity, and with the down-regulation of lysozyme activity, suggesting a trade-off between the two traits. As melanism has a genetic component, we selected both melanic and nonmelanic lines of the phase-polyphenic lepidopteran, Spodoptera littoralis, in order to test for a causative genetic link between melanism, PO activity and lysozyme activity, and to establish if there are any life-history costs associated with the melanic response. We found that, in fact, melanic lines had lower PO activity and higher lysozyme activity than nonmelanic lines, confirming a genetic trade-off between the two immune responses, but also indicating a genetic trade-off between melanism and PO activity. In addition, we found that lines with high PO activity had slower development rates suggesting that investment in PO, rather than in melanism, is costly.
Resumo:
Rhodococcus equi is a Gram-positive, facultative intracellular bacterium which infects macrophages and causes rhodococcal pneumonia and enteritis in foals. Recently, this agent has been recognized as an opportunistic pathogen for immunocompromised humans. Several murine experimental models have been used to study R. equi infection. High (H IV-A) and Low (L IV-A) antibody (Ab)-producers mice were obtained by bi-directional genetic selections for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). These lines maintain their phenotypes of high and low responders also for other antigens than those of selection (multispeciflc effect). A higher macrophage activity in L IV-A mice has been described for several intracellular infectious agents, which could be responsible for their intense macrophage antigens (Ag)-handling and low Ab production. Due to these differences, L IV-A mice were found to exhibit a better performance to trigger an effective immune response towards intracellular pathogens. The objective of this work was to characterize the immune response of Selection IV-A against R. equi. H IV-A and L IV-A mice were infected with 2.0 × 10 6 CFU of ATCC 33701 +R. equi by intravenous route. With regards to bacterial clearance and survival assays, L IV-A mice were more resistant than H IV-A mice to virulent R. equi. L IV-A mice presented a higher hydrogen peroxide (H 2O 2) and nitric oxide (NO) endogenous production by splenic macrophages than H IV-A mice. L IV-A expressed the most intense cellular response, available by the Delayed-Type Hypersensitivity (DTH) reaction, which activated macrophages and produced more H 2O 2 and NO. The three times higher specific antibodies titres in H IV-A indicated that Selection IV-A maintained the multispecific effect and the polygenic control of humoral and cellular responses also to R. equi.
Resumo:
Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we present a system for aircraft structural health monitoring based on artificial immune systems with negative selection. Inspired by a biological process, the principle of discrimination proper/non-proper, identifies and characterizes the signs of structural failure. The main application of this method is to assist in the inspection of aircraft structures, to detect and characterize flaws and decision making in order to avoid disasters. We proposed a model of an aluminum beam to perform the tests of the method. The results obtained by this method are excellent, showing robustness and accuracy.
Resumo:
The design of reverse logistics networks has now emerged as a major issue for manufacturers, not only in developed countries where legislation and societal pressures are strong, but also in developing countries where the adoption of reverse logistics practices may offer a competitive advantage. This paper presents a new model for partner selection for reverse logistic centres in green supply chains. The model offers three advantages. Firstly, it enables economic, environment, and social factors to be considered simultaneously. Secondly, by integrating fuzzy set theory and artificial immune optimization technology, it enables both quantitative and qualitative criteria to be considered simultaneously throughout the whole decision-making process. Thirdly, it extends the flat criteria structure for partner selection evaluation for reverse logistics centres to the more suitable hierarchy structure. The applicability of the model is demonstrated by means of an empirical application based on data from a Chinese electronic equipment and instruments manufacturing company.
Resumo:
Premature convergence to local optimal solutions is one of the main difficulties when using evolutionary algorithms in real-world optimization problems. To prevent premature convergence and degeneration phenomenon, this paper proposes a new optimization computation approach, human-simulated immune evolutionary algorithm (HSIEA). Considering that the premature convergence problem is due to the lack of diversity in the population, the HSIEA employs the clonal selection principle of artificial immune system theory to preserve the diversity of solutions for the search process. Mathematical descriptions and procedures of the HSIEA are given, and four new evolutionary operators are formulated which are clone, variation, recombination, and selection. Two benchmark optimization functions are investigated to demonstrate the effectiveness of the proposed HSIEA.