447 resultados para Imatges mèdiques -- Processament -- Tècniques digitals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Els objectius del projecte es divideixen en tres blocs: Primerament, realitzar una segmentació automàtica del contorn d'una imatge on hi ha una massa central. Tot seguit, a partir del contorn trobat, caracteritzar la massa. I finalment, utilitzant les característiques anteriors classificar la massa en benigne o maligne. En el projecte s'utilitza el Matlab com a eina de programació. Concretament les funcions enfocades al processat de imatges del toolbox de Image processing (propi de Matlab) i els classificadors de la PRTools de la Delft University of Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi, disseny i implementació d’un algorisme de visualització de volums i integrar-lo en la plataforma DTIWeb de visualització i processament de dades de DTI. La plataforma DTIWeb és una plataforma desenvolupada conjuntament entre el Laboratori de Gràfics i Imatge de la Universitat de Girona i d’Institut de Diagnòstic per la imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma integra els mètodes bàsics de reconstrucció de fibres del cervell. La principal limitació de la plataforma és que no suporta la visualització de models 3D. Aquest fet limita el seu us en la pràctica clínica habitual ja que es fa difícil la interpretació dels mapes de connectivitat que genera

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte s'ha dut a terme amb el Grup de visió per computador del departament d'Arquitectura i Tecnologia de Computadors (ATC) de la Universitat de Girona. Està enfocat a l'anàlisi d'imatges mèdiques, en concret s'analitzaran imatges de pròstata en relació a desenvolupaments que s'estan realitzant en el grup de visió esmentat. Els objectius fixats per aquest projecte són desenvolupar dos mòduls de processamentm d'imatges els quals afrontaran dos blocs important en el tractament d'imatges, aquests dos mòduls seran un pre-processat d'imatges, que constarà de tres filtres i un bloc de segmentació per tal de cercar la pròstata dintre de les imatges a tractar. En el projecte es treballarà amb el llenguatge de programació C++, concretament amb unes llibreries que es denominen ITK (Insight Toolkit ) i són open source enfocades al tractament d'imatges mèdiques. A part d'aquesta eina s'utilitzaran d'altres com les Qt que és una biblioteca d'eines per crear entorns gràfics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El càncer de pell es considera un dels tipus de càncer més freqüents actualment, entre d'altres factors degut a l'augment en l'exposició a la radiació ultraviolada (UV). Recentment la utilització de la Microscòpia Confocal (MCF) per a l'avaluació i diagnosi del càncer de pell ha rebut un important interès. El principal avantatge és la capacitat de visualitzar en temps real la regió d'interès a nivell cel·lular, similar a la informació obtinguda en una biòpsia, sense el patiment que suposa per al pacient. El principal inconvenient però, és que les imatges obtingudes amb MCF són difícils d'interpretar per als metges en el format actual (conjunt de talls 2D a diferents profunditats de la pell). El microscopi confocal és una de les tècniques més actuals de diagnòstic, i s'ha establert com a una eina per obtenir imatges d'alta resolució i reconstruccions 3-D d'una gran varietat de mostres biològiques. És capaç d'escombrar diferents plans en l'eix Z, obtenint imatges 2D de diferent profunditat juntament amb la informació dels paràmetres de captura (com ara la profunditat, potència del làser, posicionament en x,y,z, etc). Mitjançant eines informàtiques es pot integrar aquesta informació en un model 3D de la regió d'interès. L'objectiu principal d'aquest projecte és el desenvolupament d'una eina per a l'ajuda en la interpretació de les imatges MCF i així poder millorar el diagnosi del càncer de pell

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi, disseny i implementació de diferents tècniques d’agrupament de fibres (clustering) per tal d’integrar a la plataforma DTIWeb diferents algorismes de clustering i tècniques de visualització de clústers de fibres de forma que faciliti la interpretació de dades de DTI als especialistes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actualment, en l'àmbit mèdic, la ressonància magnètica, MRI Magnetic Resonance Imaging, és un dels sistemes més utilitzats per a la realització de diagnòstics i el seguiment de l'evolució de malalties com l'esclerosi múltiple (EM). No obstant, la gran quantitat d'informació que proporciona aquesta modalitat té com a conseqüència una tasca feixuga d'anàlisi i d'interpretació per part dels radiòlegs i neuròlegs. L'objectiu general d'aquest projecte és desenvolupar un sistema per ajudar als metges a segmentar les imatges de MRI del cervell. S'ha implementat amb MATLAB. Durant tot el procés s'han utilitzat dades sintètiques, de la base de dades simulada BrainWeb, i reals, proporcionades pels grup de metges col•laboradors amb el grup VICOROB. El projecte s'emmarca dins d'un projecte de recerca del grup de Visió per Computador i Robòtica de la Universitat de Girona

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectiu d’aquest projecte és integrar a la plataforma Starviewer ( plataforma informàtica de processament i visualització d’imatges mèdiques creada fruit de la col•laboració del Laboratori de Gràfics i Imatge (GILab) de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta de Girona) per donar suport al diagnòstic un entorn de suport a la inserció de pròtesis, que permeti automatitzar al màxim les operacions que actualment es realitzen de forma manual. Hem de tenir en compte que, tot i que, la imatge més usada pel radiòleg es la radiografia (Rx) també treballa amb tomografia computada (TAC). El TAC dona una visió 3D de l’organisme, mentre que la Rx és 2D

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectiu d’aquest projecte és ampliar la plataforma Starviewer integrant els mòduls necessaris per donar suport al diagnòstic de l’estenosi de caròtida permetent interpretar de forma més fàcil les imatges Angiografia per Ressonància Magnètica (ARM). La plataforma Starviewer és un entorn informàtic que integra funcionalitats bàsiques i avançades pel processament i la visualització d’imatges mèdiques. Està desenvolupat pel Grup d’Informàtica Gràfica de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta. Una de les limitacions de la plataforma és el no suportar el tractament de lesions del sistema vascular. Per això ens proposem a corregir-ho i ampliar les seves extensions per a poder diagnosticar l’estenosi de caròtida

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectiu d’aquest projecte es dissenyar i implementar un entorn de suport al diagnòstic dels aneurismes. Aquest entorn s’haurà d’integrar en la plataforma Starviewer. La plataforma Starviewer és un entorn de processament i visualització de dades mèdiques desenvolupat conjuntament entre el Laboratori de Gràfics i Imatge de la UdG i l’ Institut de Diagnòstic per la Imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma ofereix les funcionalitats bàsiques per diagnosticar a partir d’imatges. Tot i les funcionalitats de la plataforma, en la versió actual no es suporta el processament avançat d’imatge d’angiografia. En aquest projecte ens proposem ampliar aquesta plataforma integrant els mòduls necessaris que permetin el processament d’angiografies usades en el diagnòstic dels aneurismes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El processament de dades cardíaques és, sinó el que més, un dels més complexes de tractar. El problema principal és que a diferència d’altres parts de l’organisme, el cor del pacient està en moviment continu. Aquest moviment queda representat en les imatges generades pels aparells de captació en forma de soroll. Aquest soroll no només dificulta la detecció de les patologies per part dels cardiòlegs i els especialistes sinó que també en moltes ocasions limita l’aplicació de certes tècniques i mètodes. Així per exemple, l’aplicació de mètodes de visualització 3D (mètodes que permeten generar una representació 3D d’un òrgan) que poden aplicar-se fàcilment en visualització de dades del cervell no són aplicables sobre dades de cor. El Grup d’Informàtica Gràfica de la Universitat de Girona, juntament amb l’Institut de Diagnòstic per la Imatge (IDI) de l'hospital Dr. Josep Trueta, està col·laborant en el desenvolupament de noves eines informàtiques que donin suport al diagnòstic. Una de les prioritats actuals de l'IDI és el tractament de malalties cardíaques. Es disposa d’una plataforma anomenada Starviewer que integra les operacions bàsiques de manipulació i visualització de dades mèdiques. L’objectiu d’aquest projecte és el de desenvolupar i integrar en la plataforma Starviewer els mòduls necessaris per poder tractar, manipular i visualitzar dades cardíaques provinents de ressònancies magnètiques

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La visualització científica estudia i defineix algorismes i estructures de dades que permeten fer comprensibles conjunts de dades a través d’imatges. En el cas de les aplicacions mèdiques les dades que cal interpretar provenen de diferents dispositius de captació i es representen en un model de vòxels. La utilitat d’aquest model de vòxels depèn de poder-lo veure des del punt de vista ideal, és a dir el que aporti més informació. D’altra banda, existeix la tècnica dels Miralls Màgics que permet veure el model de vòxels des de diferents punts de vista alhora i mostrant diferents valors de propietat a cada mirall. En aquest projecte implementarem un algorisme que permetrà determinar el punt de vista ideal per visualitzar un model de vòxels així com també els punts de vista ideals per als miralls per tal d’aconseguir el màxim d’informació possible del model de vòxels. Aquest algorisme es basa en la teoria de la informació per saber quina és la millor visualització. L’algorisme també permetrà determinar l’assignació de colors òptima per al model de vòxels