607 resultados para Imatges mèdiques


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a l'Imperial College of London, Gran Bretanya, entre setembre i desembre 2006. Disposar d'una geometria bona i ben definida és essencial per a poder resoldre eficientment molts dels models computacionals i poder obtenir uns resultats comparables a la realitat del problema. La reconstrucció d'imatges mèdiques permet transformar les imatges obtingudes amb tècniques de captació a geometries en formats de dades numèriques . En aquest text s'explica de forma qualitativa les diverses etapes que formen el procés de reconstrucció d'imatges mèdiques fins a finalment obtenir una malla triangular per a poder‐la processar en els algoritmes de càlcul. Aquest procés s'inicia a l'escàner MRI de The Royal Brompton Hospital de Londres del que s'obtenen imatges per a després poder‐les processar amb les eines CONGEN10 i SURFGEN per a un entorn MATLAB. Aquestes eines les han desenvolupat investigadors del Bioflow group del departament d'enginyeria aeronàutica del Imperial College of London i en l'ultim apartat del text es comenta un exemple d'una artèria que entra com a imatge mèdica i surt com a malla triangular processable amb qualsevol programari o algoritme que treballi amb malles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Els objectius del projecte es divideixen en tres blocs: Primerament, realitzar unasegmentació automàtica del contorn d'una imatge on hi ha una massa central. Tot seguit, a partir del contorn trobat, caracteritzar la massa. I finalment, utilitzant les característiques anteriors classificar la massa en benigne o maligne. En el projecte s'utilitza el Matlab com a eina de programació. Concretament les funcions enfocades al processat de imatges del toolbox de Image processing (propi de Matlab) i els classificadors de la PRTools de la Delft University of Technology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquest projecte s'ha dut a terme amb el Grup de visió per computador del departamentd'Arquitectura i Tecnologia de Computadors (ATC) de la Universitat de Girona. Està enfocat a l'anàlisi d'imatges mèdiques, en concret s'analitzaran imatges de pròstata en relació a desenvolupaments que s'estan realitzant en el grup de visió esmentat. Els objectius fixats per aquest projecte són desenvolupar dos mòduls de processamentm d'imatges els quals afrontaran dos blocs important en el tractament d'imatges, aquests dos mòduls seran un pre-processat d'imatges, que constarà de tres filtres i un bloc de segmentació per tal de cercar la pròstata dintre de les imatges a tractar. En el projecte es treballarà amb el llenguatge de programació C++, concretament amb unes llibreries que es denominen ITK (Insight Toolkit ) i són open source enfocades al tractament d'imatges mèdiques. A part d'aquesta eina s'utilitzaran d'altres com les Qt que és una biblioteca d'eines per crear entorns gràfics

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquest projecte s'ha dut a terme amb el Grup de visió per computador del departament d'Arquitectura i Tecnologia de Computadors (ATC) de la Universitat de Girona. Està enfocat a l'anàlisi d'imatges mèdiques, en concret s'analitzaran imatges de pròstata en relació a desenvolupaments que s'estan realitzant en el grup de visió esmentat. Els objectius fixats per aquest projecte són desenvolupar dos mòduls de processamentm d'imatges els quals afrontaran dos blocs important en el tractament d'imatges, aquests dos mòduls seran un pre-processat d'imatges, que constarà de tres filtres i un bloc de segmentació per tal de cercar la pròstata dintre de les imatges a tractar. En el projecte es treballarà amb el llenguatge de programació C++, concretament amb unes llibreries que es denominen ITK (Insight Toolkit ) i són open source enfocades al tractament d'imatges mèdiques. A part d'aquesta eina s'utilitzaran d'altres com les Qt que és una biblioteca d'eines per crear entorns gràfics

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Els objectius del projecte es divideixen en tres blocs: Primerament, realitzar una segmentació automàtica del contorn d'una imatge on hi ha una massa central. Tot seguit, a partir del contorn trobat, caracteritzar la massa. I finalment, utilitzant les característiques anteriors classificar la massa en benigne o maligne. En el projecte s'utilitza el Matlab com a eina de programació. Concretament les funcions enfocades al processat de imatges del toolbox de Image processing (propi de Matlab) i els classificadors de la PRTools de la Delft University of Technology

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La tecnologia GPGPU permet paral∙lelitzar càlculs executant operacions aritmètiques en els múltiples processadors de que disposen els xips gràfics. S'ha fet servir l'entorn de desenvolupament CUDA de la companyia NVIDIA, que actualment és la solució GPGPU més avançada del mercat. L'algorisme de neuroimatge implementat pertany a un estudi VBM desenvolupat amb l'eina SPM. Es tracta concretament del procés de segmentació d'imatges de ressonància magnètica cerebrals, en els diferents teixits dels quals es composa el cervell: matèria blanca, matèria grisa i líquid cefaloraquidi. S'han implementat models en els llenguatges Matlab, C i CUDA, i s'ha fet un estudi comparatiu per plataformes hardware diferents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El projecte ha consistit en el disseny i implementació d'una arquitectura/plataforma d'integració dels serveis d'emmagatzemament i postprocessament d'imatge mèdica que oferix el grup així com la visualització, anonimització, transferència d'arxius... basat en una interfície web com a frontend de la plataforma. Els servis que requereixen interacció gràfica han estat implementats mitjançant tècniques d'exportació d'escriptori remotament a la web i altres s'han implementat per tal que funcionin amb el cluster de màquines del que disposa el PIC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Con la creciente generación de resonancias magnéticas, los servicios de radiología necesitan aplicaciones que les faciliten el trabajo de acceso remoto a los datos y a las herramientas que utilicen para la extracción de datos para realizar sus diagnósticos. El objetivo de este proyecto es el de estudiar e integrar en la plataforma web del grupo de Imagen Médica del PIC llamada PICNIC (PIC NeuroImaging Center) un conjunto de aplicaciones para el estudio y procesamiento de neuroimagen con la implementación de herramientas software en la plataforma grid del PIC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectiu principal d’aquest projecte era implementar la visualització 3D demodels fusionats i aplicar totes les tècniques possibles per realitzar aquesta fusió. Aquestes tècniques s’integraran en la plataforma de visualització i processament de dades mèdiques STARVIEWER. Per assolir l’ objectiu principal s’ han definit els següents objectius específics:1- estudiar els algoritmes de visualització de models simples i analitzar els diferents paràmetres a tenir en compte. 2- ampliació de la tècnica de visualització bàsica seleccionada per tal de suportar els models fusionats. 3- avaluar i compar tots els mètodes implementats per poder determinar quin ofereix les millors visualitzacions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudi, disseny i implementació d’un algorisme de visualització de volums i integrar-lo en la plataforma DTIWeb de visualització i processament de dades de DTI. La plataforma DTIWeb és una plataforma desenvolupada conjuntament entre el Laboratori de Gràfics i Imatge de la Universitat de Girona i d’Institut de Diagnòstic per la imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma integra els mètodes bàsics de reconstrucció de fibres del cervell. La principal limitació de la plataforma és que no suporta la visualització de models 3D. Aquest fet limita el seu us en la pràctica clínica habitual ja que es fa difícil la interpretació dels mapes de connectivitat que genera

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectiu d’aquest projecte és integrar a la plataforma Starviewer ( plataforma informàtica de processament i visualització d’imatges mèdiques creada fruit de la col•laboració del Laboratori de Gràfics i Imatge (GILab) de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta de Girona) per donar suport al diagnòstic un entorn de suport a la inserció de pròtesis, que permeti automatitzar al màxim les operacions que actualment es realitzen de forma manual. Hem de tenir en compte que, tot i que, la imatge més usada pel radiòleg es la radiografia (Rx) també treballa amb tomografia computada (TAC). El TAC dona una visió 3D de l’organisme, mentre que la Rx és 2D

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectiu d’aquest projecte es dissenyar i implementar un entorn de suport al diagnòstic dels aneurismes. Aquest entorn s’haurà d’integrar en la plataforma Starviewer. La plataforma Starviewer és un entorn de processament i visualització de dades mèdiques desenvolupat conjuntament entre el Laboratori de Gràfics i Imatge de la UdG i l’ Institut de Diagnòstic per la Imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma ofereix les funcionalitats bàsiques per diagnosticar a partir d’imatges. Tot i les funcionalitats de la plataforma, en la versió actual no es suporta el processament avançat d’imatge d’angiografia. En aquest projecte ens proposem ampliar aquesta plataforma integrant els mòduls necessaris que permetin el processament d’angiografies usades en el diagnòstic dels aneurismes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment