852 resultados para Image restoration
Resumo:
When preparing an article on image restoration in astronomy, it is obvious that some topics have to be dropped to keep the work at reasonable length. We have decided to concentrate on image and noise models and on the algorithms to find the restoration. Topics like parameter estimation and stopping rules are also commented on. We start by describing the Bayesian paradigm and then proceed to study the noise and blur models used by the astronomical community. Then the prior models used to restore astronomical images are examined. We describe the algorithms used to find the restoration for the most common combinations of degradation and image models. Then we comment on important issues such as acceleration of algorithms, stopping rules, and parameter estimation. We also comment on the huge amount of information available to, and made available by, the astronomical community.
Resumo:
This paper presents a unique two-stage image restoration framework especially for further application of a novel rectangular poor-pixels detector, which, with properties of miniature size, light weight and low power consumption, has great value in the micro vision system. To meet the demand of fast processing, only a few measured images shifted up to subpixel level are needed to join the fusion operation, fewer than those required in traditional approaches. By maximum likelihood estimation with a least squares method, a preliminary restored image is linearly interpolated. After noise removal via Canny operator based level set evolution, the final high-quality restored image is achieved. Experimental results demonstrate effectiveness of the proposed framework. It is a sensible step towards subsequent image understanding and object identification.
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.
Resumo:
A laser scanning microscope collects information from a thin, focal plane and ignores out of focus information. During the past few years it has become the standard imaging method to characterise cellular morphology and structures in static as well as in living samples. Laser scanning microscopy combined with digital image restoration is an excellent tool for analysing the cellular cytoarchitecture, expression of specific proteins and interactions of various cell types, thus defining valid criteria for the optimisation of cell culture models. We have used this tool to establish and evaluate a three dimensional model of the human epithelial airway wall.
Resumo:
The focal point of this paper is to propose and analyze a P 0 discontinuous Galerkin (DG) formulation for image denoising. The scheme is based on a total variation approach which has been applied successfully in previous papers on image processing. The main idea of the new scheme is to model the restoration process in terms of a discrete energy minimization problem and to derive a corresponding DG variational formulation. Furthermore, we will prove that the method exhibits a unique solution and that a natural maximum principle holds. In addition, a number of examples illustrate the effectiveness of the method.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Crisis communication is a widely treated field. There are lot of works and guides which provide helpful information in order to face crisis situations successfully (Alcat, 2005, Benoit, 1997) and articles about case studies (Nespereira, 2014, Blaney y Benoit 2001). Nonetheless, most of times, these guides are focused on business or corporations (Abeler, 2010) and there are not such information about crisis communications in politics (Gaspar e Ibeas, 2015). The field is smaller if we speak about forgiveness as restoration image tool in politics (Harris 2006). Despite all, we live in “forgiveness era” as Krauze said (1998) where people demand to politicians to apologize when they have mistakes (Harris et al. 2006:716). So, we will try to make an approach to forgiveness in politics as a image restoration tool and analyze its capabilities in order to face crisis management.
Resumo:
We consider four-dimensional variational data assimilation (4DVar) and show that it can be interpreted as Tikhonov or L2-regularisation, a widely used method for solving ill-posed inverse problems. It is known from image restoration and geophysical problems that an alternative regularisation, namely L1-norm regularisation, recovers sharp edges better than L2-norm regularisation. We apply this idea to 4DVar for problems where shocks and model error are present and give two examples which show that L1-norm regularisation performs much better than the standard L2-norm regularisation in 4DVar.
Resumo:
We show that the four-dimensional variational data assimilation method (4DVar) can be interpreted as a form of Tikhonov regularization, a very familiar method for solving ill-posed inverse problems. It is known from image restoration problems that L1-norm penalty regularization recovers sharp edges in the image more accurately than Tikhonov, or L2-norm, penalty regularization. We apply this idea from stationary inverse problems to 4DVar, a dynamical inverse problem, and give examples for an L1-norm penalty approach and a mixed total variation (TV) L1–L2-norm penalty approach. For problems with model error where sharp fronts are present and the background and observation error covariances are known, the mixed TV L1–L2-norm penalty performs better than either the L1-norm method or the strong constraint 4DVar (L2-norm)method. A strength of the mixed TV L1–L2-norm regularization is that in the case where a simplified form of the background error covariance matrix is used it produces a much more accurate analysis than 4DVar. The method thus has the potential in numerical weather prediction to overcome operational problems with poorly tuned background error covariance matrices.
Resumo:
In this paper, an anisotropic nonlinear diffusion equation for image restoration is presented. The model has two terms: the diffusion and the forcing term. The balance between these terms is made in a selective way, in which boundary points and interior points of the objects that make up the image are treated differently. The optimal smoothing time concept, which allows for finding the ideal stop time for the evolution of the partial differential equation is also proposed. Numerical results show the proposed model's high performance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)