995 resultados para ISING-MODELS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ the methods of statistical physics to study the performance of Gallager type error-correcting codes. In this approach, the transmitted codeword comprises Boolean sums of the original message bits selected by two randomly-constructed sparse matrices. We show that a broad range of these codes potentially saturate Shannon's bound but are limited due to the decoding dynamics used. Other codes show sub-optimal performance but are not restricted by the decoding dynamics. We show how these codes may also be employed as a practical public-key cryptosystem and are of competitive performance to modern cyptographical methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exact expressions for the response functions of kinetic Ising models are reported. These results valid for magnetisation in one dimension are based on a general formalism that yield the earlier results of Glauber and Kimball as special cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spin systems in the presence of disorder are described by two sets of degrees of freedom, associated with orientational (spin) and disorder variables, which may be characterized by two distinct relaxation times. Disordered spin models have been mostly investigated in the quenched regime, which is the usual situation in solid state physics, and in which the relaxation time of the disorder variables is much larger than the typical measurement times. In this quenched regime, disorder variables are fixed, and only the orientational variables are duly thermalized. Recent studies in the context of lattice statistical models for the phase diagrams of nematic liquid-crystalline systems have stimulated the interest of going beyond the quenched regime. The phase diagrams predicted by these calculations for a simple Maier-Saupe model turn out to be qualitative different from the quenched case if the two sets of degrees of freedom are allowed to reach thermal equilibrium during the experimental time, which is known as the fully annealed regime. In this work, we develop a transfer matrix formalism to investigate annealed disordered Ising models on two hierarchical structures, the diamond hierarchical lattice (DHL) and the Apollonian network (AN). The calculations follow the same steps used for the analysis of simple uniform systems, which amounts to deriving proper recurrence maps for the thermodynamic and magnetic variables in terms of the generations of the construction of the hierarchical structures. In this context, we may consider different kinds of disorder, and different types of ferromagnetic and anti-ferromagnetic interactions. In the present work, we analyze the effects of dilution, which are produced by the removal of some magnetic ions. The system is treated in a “grand canonical" ensemble. The introduction of two extra fields, related to the concentration of two different types of particles, leads to higher-rank transfer matrices as compared with the formalism for the usual uniform models. Preliminary calculations on a DHL indicate that there is a phase transition for a wide range of dilution concentrations. Ising spin systems on the AN are known to be ferromagnetically ordered at all temperatures; in the presence of dilution, however, there are indications of a disordered (paramagnetic) phase at low concentrations of magnetic ions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usual Ashkin-Teller (AT) model is obtained as a superposition of two Ising models coupled through a four-spin interaction term. In two dimension the AT model displays a line of fixed points along which the exponents vary continuously. On this line the model becomes soluble via a mapping onto the Baxter model. Such richness of multicritical behavior led Grest and Widom to introduce the N-color Ashkin-Teller model (N-AT). Those authors made an extensive analysis of the model thus introduced both in the isotropic as well as in the anisotropic cases by several analytical and computational methods. In the present work we define a more general version of the 3-color Ashkin-Teller model by introducing a 6-spin interaction term. We investigate the corresponding symmetry structure presented by our model in conjunction with an analysis of possible phase diagrams obtained by real space renormalization group techniques. The phase diagram are obtained at finite temperature in the region where the ferromagnetic behavior is predominant. Through the use of the transmissivities concepts we obtain the recursion relations in some periodical as well as aperiodic hierarchical lattices. In a first analysis we initially consider the two-color Ashkin-Teller model in order to obtain some results with could be used as a guide to our main purpose. In the anisotropic case the model was previously studied on the Wheatstone bridge by Claudionor Bezerra in his Master Degree dissertation. By using more appropriated computational resources we obtained isomorphic critical surfaces described in Bezerra's work but not properly identified. Besides, we also analyzed the isotropic version in an aperiodic hierarchical lattice, and we showed how the geometric fluctuations are affected by such aperiodicity and its consequences in the corresponding critical behavior. Those analysis were carried out by the use of appropriated definitions of transmissivities. Finally, we considered the modified 3-AT model with a 6-spin couplings. With the inclusion of such term the model becomes more attractive from the symmetry point of view. For some hierarchical lattices we derived general recursion relations in the anisotropic version of the model (3-AAT), from which case we can obtain the corresponding equations for the isotropic version (3-IAT). The 3-IAT was studied extensively in the whole region where the ferromagnetic couplings are dominant. The fixed points and the respective critical exponents were determined. By analyzing the attraction basins of such fixed points we were able to find the three-parameter phase diagram (temperature £ 4-spin coupling £ 6-spin coupling). We could identify fixed points corresponding to the universality class of Ising and 4- and 8-state Potts model. We also obtained a fixed point which seems to be a sort of reminiscence of a 6-state Potts fixed point as well as a possible indication of the existence of a Baxter line. Some unstable fixed points which do not belong to any aforementioned q-state Potts universality class was also found

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using data from a single simulation we obtain Monte Carlo renormalization-group information in a finite region of parameter space by adapting the Ferrenberg-Swendsen histogram method. Several quantities are calculated in the two-dimensional N 2 Ashkin-Teller and Ising models to show the feasibility of the method. We show renormalization-group Hamiltonian flows and critical-point location by matching of correlations by doing just two simulations at a single temperature in lattices of different sizes to partially eliminate finite-size effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the influence of sub-Ohmic dissipation on randomly diluted quantum Ising and rotor models. The dissipation causes the quantum dynamics of sufficiently large percolation clusters to freeze completely. As a result, the zero-temperature quantum phase transition across the lattice percolation threshold separates an unusual super-paramagnetic cluster phase from an inhomogeneous ferromagnetic phase. We determine the low-temperature thermodynamic behavior in both phases, which is dominated by large frozen and slowly fluctuating percolation clusters. We relate our results to the smeared transition scenario for disordered quantum phase transitions, and we compare the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation is primarily an applied statistical modelling investigation, motivated by a case study comprising real data and real questions. Theoretical questions on modelling and computation of normalization constants arose from pursuit of these data analytic questions. The essence of the thesis can be described as follows. Consider binary data observed on a two-dimensional lattice. A common problem with such data is the ambiguity of zeroes recorded. These may represent zero response given some threshold (presence) or that the threshold has not been triggered (absence). Suppose that the researcher wishes to estimate the effects of covariates on the binary responses, whilst taking into account underlying spatial variation, which is itself of some interest. This situation arises in many contexts and the dingo, cypress and toad case studies described in the motivation chapter are examples of this. Two main approaches to modelling and inference are investigated in this thesis. The first is frequentist and based on generalized linear models, with spatial variation modelled by using a block structure or by smoothing the residuals spatially. The EM algorithm can be used to obtain point estimates, coupled with bootstrapping or asymptotic MLE estimates for standard errors. The second approach is Bayesian and based on a three- or four-tier hierarchical model, comprising a logistic regression with covariates for the data layer, a binary Markov Random field (MRF) for the underlying spatial process, and suitable priors for parameters in these main models. The three-parameter autologistic model is a particular MRF of interest. Markov chain Monte Carlo (MCMC) methods comprising hybrid Metropolis/Gibbs samplers is suitable for computation in this situation. Model performance can be gauged by MCMC diagnostics. Model choice can be assessed by incorporating another tier in the modelling hierarchy. This requires evaluation of a normalization constant, a notoriously difficult problem. Difficulty with estimating the normalization constant for the MRF can be overcome by using a path integral approach, although this is a highly computationally intensive method. Different methods of estimating ratios of normalization constants (N Cs) are investigated, including importance sampling Monte Carlo (ISMC), dependent Monte Carlo based on MCMC simulations (MCMC), and reverse logistic regression (RLR). I develop an idea present though not fully developed in the literature, and propose the Integrated mean canonical statistic (IMCS) method for estimating log NC ratios for binary MRFs. The IMCS method falls within the framework of the newly identified path sampling methods of Gelman & Meng (1998) and outperforms ISMC, MCMC and RLR. It also does not rely on simplifying assumptions, such as ignoring spatio-temporal dependence in the process. A thorough investigation is made of the application of IMCS to the three-parameter Autologistic model. This work introduces background computations required for the full implementation of the four-tier model in Chapter 7. Two different extensions of the three-tier model to a four-tier version are investigated. The first extension incorporates temporal dependence in the underlying spatio-temporal process. The second extensions allows the successes and failures in the data layer to depend on time. The MCMC computational method is extended to incorporate the extra layer. A major contribution of the thesis is the development of a fully Bayesian approach to inference for these hierarchical models for the first time. Note: The author of this thesis has agreed to make it open access but invites people downloading the thesis to send her an email via the 'Contact Author' function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of fourfold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one-dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one-dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.