987 resultados para IRIDIUM(III) COMPLEXES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel blue-emitting phosphorescent iridium(III) complexes with fluorinated 1,3,4-oxadiazole derivatives as cyclometalated ligands and dithiolates as ancillary ligands have been synthesized and fully characterized; highly efficient OLEDs have been achieved using these complexes in the light-blue to blueemitting region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One mu-dichloro bridged diiridium complex and three mononuclear iridium(III) complexes based on the 1,3,4-oxadiazole derivatives as cyclometalated ligands and acetylacetonate (acac) or dithiolates O,O'-diethyldithiophosphate (Et(2)dtp) or N,N'-diethyldithiocarbamate (Et(2)dtc) as ancillary ligands have been synthesized and systematically studied by X-ray diffraction analysis. The results reveal that three mononuclear complexes all adopt distorted octahedral coordination geometry around the iridium center by two chelating ligands with cis-C-C and trans-N-N dispositions, which have the same coordination mode as the diiridium dimer. The dinuclear complex crystallizes in the monoclinic system and space group C2/c, whereas three mononuclear iridium complexes are all triclinic system and space group P(1) over bar. In the stacking structure of the dimer, one-dimensional tape-like chains along the b-axis are formed by hydrogen bondings, which are strengthened by pi stacking interactions between phenyl rings of 1,3,4-oxadiazole ligands. Then these chains assemble a three-dimensional alternating peak and valley fused wave-shape structure. In each stacking structure of three mononuclear complexes, two molecules form a dimer by the C-H center dot center dot center dot O hydrogen bondings, and these dimers are connected by pi stacking interactions along the b-axis, constructing a zigzag chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel iridium(III) complexes with two 2-arylquinoline derivatives as cyclometalated ligands and one monoanionic ligand, such as acetylacetonate (acac), N,N'-diethyldithiocarbamate (Et(2)dtc) and O,O'-diethyldithiophosphate (Et(2)dtp), as ancillary ligands have been synthesized and structurally characterized by H-1 NMR, MS and elemental analysis (EA). The cyclic voltammetry, absorption, emission and electroluminescence properties of these complexes were systematically investigated. Through extending pi-conjugation, introducing electron-donating groups in the ligand frame, or changing the ancillary ligands, the HOMO energy levels of the iridium(III) complexes can be tuned, while their LUMO levels remain little affected; in consequence, the emission wavelengths of the iridium(III) complexes can be tuned in the range 606-653 nm. The highly efficient organic light-emitting diodes (OLEDs) with saturated red emission have been demonstrated. A maximum current efficiency of 10.79 cd A(-1), at a current density of 0.74 mA cm(-2), with an emission wavelength of 616 nm and Commisioon Internationale de L'Eclairage (CIE) coordinates of (0.65, 0.35), which are very close to the National Television System Comittee (NSTC) standard red emission, have been achieved when using complex (DPQ)(2)Ir(acac) as a phosphor dopant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new iridium(III) complexes 1-4, with 1,3,4-oxadiazole derivative as cyclometalated ligand for the first time, have been synthesized and structurally characterized by NMR, EA, MS and X-ray diffraction analysis (except 1). The stronger ligand field strength of the dithiolate ancillary ligands results in higher oxidation potentials and lower HOMO energy levels of complexes than acetylacetone. The absorption spectra of these complexes display low-energy metal-to-ligand charge transfer transition ranging from 350 to 500 nm. Complexes with dithiolate ancillary ligand emit at maximum wavelengths of ca. 500 nm, blue shifting 17 and 11 nm with respect to their counterpart with acetylacetone ligand. The electrophosphorescent devices with 2-4 as phosphorescent dopant in emitting layer have been fabricated. All devices have a low turn-on voltage in the range of 4.5 and 4.9 V. A high-efficiency green emission with maximum luminous efficiency of 5.28 cd/A at current density of 1.37 mA/cm(2) and a maximum brightness of 2592 cd/m(2) at 15.2 V has been achieved in device using 2 as emitter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel cyclometalated iridium(III) complexes bearing 2,4-diphenylquinoline ligands with fluorinated substituent were prepared and characterized by elemental analysis, NMR and mass spectroscopy. The cyclic voltammetry, absorption, emission and electroluminescent properties of these complexes were systematically investigated. Electrochemical studies showed that the oxidation of the fluorinated complexes occurred at more positive potentials (in the range 0.57-0.69 V) than the unfluorinated complex 1 (0.42 V). In view of the energy level, the lowering of the LUMO by fluorination is significantly less than that of the HOMO. The weak and low energies absorption bands in the range of 300-600 nm are well resolved, likely associated with MLCT and (3)pi-pi* transitions. These complexes show strong orange red emission both in the solution and solid state. The emission maxima of the fluorinated complexes showed blue shift by 9, 24 and 15 nm for 2, 3 and 4, respectively, with respect to the unfluorinated analogous 1. Multilayered organic light-emitting diodes (OLEDs) were fabricated by using the complexes as dopant materials. Significantly higher performance and lower turn-on voltage were achieved using the fluorinated complexes as the emitter than that using the unfluorinated counterpart 1 under the same doping level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new iridium (III) complexes with two cyclometalated (CN)-N-boolean AND ligands (imidazole, oxazole and thiazole-based, respectively) and one acetylacetone (acac) ancillary ligand have been synthesized and fully characterized. The structure of the thiazole-based complex has been determined by single crystal X-ray diffraction analysis. The Ir center was located in a distorted octahedral environment by three chelating ligands with the N-N in the trans and C-C in the cis configuration. By changing the hetero-atom of (CN)-N-boolean AND ligands the order S, O and N, a marked and systematic hypsochromic shift of the maximum emission peak of the complexes was realized. The imidazole-based complex emits at a wavelength of 500 nm, which is in the blue to green region. The tuning of emission wavelengths is consistent with the variation of the energy gap estimated front electrochemistry results. An electroluminescent device using the thiazole-based complex as a dopant in the emitting layer has been fabricated. A highly efficient yellow emission with a maximum luminous efficiency of 9.8 cd/A at a current density of 24.2 mA/cm(2) and a maximum brightness of 7985 cd/m(2) at 19.6 V has been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new cyclometalated iridium(III) complexes based on ligands of diphenylquinoline with fluorinated substituents were prepared, and characterized by elemental analysis (EA), H-1 NMR, and mass spectroscopy (MS). The photophysical and electrophosphorescent properties of the complexes were briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemiluminescence from four cyclometalated iridium(III) complexes containing an ancillary bathophenanthroline-disulfonate ligand exhibited a wide range of emission colours (green to red), and in some cases intensities that are far greater than the commonly employed benchmark reagent, [Ru(bpy)3](2+). A similar complex incorporating a sulfonated triazolylpyridine-based ligand enabled the emission to be shifted into the blue region of the spectrum, but the responses with this complex were relatively poor. DFT calculations of electronic structure and emission spectra support the experimental findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern society, light is mostly powered by electricity which lead to a significant increase of the global energy consumption. In order to reduce it, different kinds of electric lamps have been developed over the years; it is now accepted that phosphorescence-based OLEDs offer many advantages over existing light technologies. Iridium complexes are considered excellent candidates for bright materials by virtue of the possibility to easily tune the wavelength of the emitted radiation, by appropriate modifications of the nature of the ligands. It is important to note that the synthesis of Ir(III) blue-emitting complexes is a very challenging goal, because of wide HOMO-LUMO gaps needed for produce a deep blue emission. During my thesis I planned the synthesis of two different series of new Ir(III) heteroleptic complexes, the C and the N series, using cyclometalating ligands containing an increasing number of nitrogens in inverse and regular position. I successfully performed in the synthesis of the required four ligands, i.e. 1-methyl-4-phenyl-1H-imidazole (2), 4-phenyl-1-methyl-1,2,3-triazole (3), 1-phenyl-1H-1,2,3-triazole (6) and 1-phenyl-1H-tetrazole (7), that differ in the number of nitrogens present in the heterocyclic ring and in the position of the phenyl ring. Therefore the cyclometalation of the obtained ligands to get the corresponding Ir(III)-complexes was attempted. I succeeded in the synthesis of two Ir(III)-complexes of the C series, and I carried out various attempts to set up the appropriate reaction conditions to get the remaining desired derivatives. The work is still in progress, and once all the desired complexes will be synthesized and characterized, a correlation between their structure and their emitting properties could be formulated analysing and comparing the photophysical data of the real compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the target to design and develop new functionalized green triplet light emitters that possess distinctive electronic properties for robust and highly efficient phosphorescent organic light-emitting diodes (PHOLEDs), a series of bluish-green to yellow-green phosphorescent tris-cyclometalated homoleptic iridium(III) complexes [Ir(ppy-X)(3)] (X=SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph, Hppy=2-phenylpyridine) have been synthesized and fully characterized by spectroscopic, redox, and photophysical methods

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis, isomeric studies, and photophysical characterization of a series of multifunctional cyclometalated iridium(III) complexes containing a fluoro- or methyl-substituted 2[3-(N-plienylcarbazolyl)]pyridine molecular framework are presented. All of the complexes are thermally stable solids and highly efficient electrophosphors. The optical, electrochemical, photo-, and electrophosphorescence traits of these iridium phosphors have been studied in terms of the electronic nature and coordinating site of the aryl or pyridyl ring substituents. The correlation between the functional properties of these phosphors and the results of density functional theory calculations was made. Arising from the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such a moiety can increase the highest-occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent phosphor with 2-phenylpyridine ligands. Remarkably, the excited-state properties can be manipulated through ligand and substituent effects that allow the tuning of phosphorescence energies from bluish green to deep red.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a quantum chemistry method was used to investigate the effect of different sizes of substituted phenanthrolines on absorption, energy transfer, and the electroluminescent performance of a series of Eu(TTA)(3)L (L = [1,10] phenanthroline (Phen), Pyrazino[2,3-f][1,10]phenanthroline (PyPhen), 2-methylprrazino[2,3-f][1,10] phenanthroline(MPP), dipyrido[3,2-a:2',3'-c]phenazine(DPPz), 11-methyldipyrido[3,2-a:2',3'c]phenazine(MDPz), 11.12-dimethyldipyrido[3,2-a:2',3'-c]phenazine(DDPz), and benzo[i]dipyrido[3,2-a:2',3'-c]phenazine (BDPz)) complexes. Absorption spectra calculations show that different sizes of secondary ligands have different effects on transition characters, intensities, and absorption peak positions.