Highly efficient iridium(III) complexes with diphenylquinoline ligands for organic light-emitting diodes: Synthesis and effect of fluorinated substitutes on electrochemistry, photophysics and electroluminescence
Data(s) |
2006
|
---|---|
Resumo |
A series of novel cyclometalated iridium(III) complexes bearing 2,4-diphenylquinoline ligands with fluorinated substituent were prepared and characterized by elemental analysis, NMR and mass spectroscopy. The cyclic voltammetry, absorption, emission and electroluminescent properties of these complexes were systematically investigated. Electrochemical studies showed that the oxidation of the fluorinated complexes occurred at more positive potentials (in the range 0.57-0.69 V) than the unfluorinated complex 1 (0.42 V). In view of the energy level, the lowering of the LUMO by fluorination is significantly less than that of the HOMO. The weak and low energies absorption bands in the range of 300-600 nm are well resolved, likely associated with MLCT and (3)pi-pi* transitions. These complexes show strong orange red emission both in the solution and solid state. The emission maxima of the fluorinated complexes showed blue shift by 9, 24 and 15 nm for 2, 3 and 4, respectively, with respect to the unfluorinated analogous 1. Multilayered organic light-emitting diodes (OLEDs) were fabricated by using the complexes as dopant materials. Significantly higher performance and lower turn-on voltage were achieved using the fluorinated complexes as the emitter than that using the unfluorinated counterpart 1 under the same doping level. |
Identificador | |
Idioma(s) |
英语 |
Fonte |
Zhang XW;Gao J;Yang CL;Zhu LN;Li ZG;Zhang K;Qin JG;You H;Ma DG.Highly efficient iridium(III) complexes with diphenylquinoline ligands for organic light-emitting diodes: Synthesis and effect of fluorinated substitutes on electrochemistry, photophysics and electroluminescence,JOURNAL OF ORGANOMETALLIC CHEMISTRY ,2006,691(20):4312-4319 |
Palavras-Chave | #EXCITED-STATE PROPERTIES #ELECTROPHOSPHORESCENT DEVICES #TRANSPORTING MATERIALS #IR(III) #PHOSPHORESCENCE #MORPHOLOGY #EMISSION |
Tipo |
期刊论文 |