990 resultados para IR Spectrum of high tridymite
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) Method is applied to generate extended 14s 8p and 17s 11p Gaussian basis sets for the atoms O and Si, respectively. The role of the weight functions in the assessment of the numerical integration range of the GCHF is shown. The Gaussian basis sets are contracted to [6s4p] O atom and [8s5p] Si atom by the Dunning's segmented contraction scheme. To evaluate the quality of our contracted [6s4p] and [8s5p] bases in molecular calculations we accomplish calculations of total and orbital energies in the Hartree-Fock-Roothaan method for O-2 and SiO molecules. We compare the results obtained with the our (14s 8p) and (17s 11p) bases sets with the of 6-311G basis and with values from the literature. The addition of one d polarization function in the silicon basis and its utilization with the basis for oxygen leads to the calculation of electronic properties and IR Spectrum of high tridymite in space group D-3d. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is employed to design 16s, 16s10p, 24s17p13d, 25s17p13d, and 26s17p Gaussian basis sets for the H ((2)S), O ((3)P), O(2-) ((1)S), Cr(3+) ((4)F), Cr(4+) ((3)F), and Cr(6+) ((1)S) atomic species. These basis sets are then contracted to (4s) for H ((2)S), (6s4p) for O ((3)P), and O(2-) ((1)S), (986p3d) for Cr(3+) ((4)F), (10s8p3d) for Cr(4+) ((3)F), and (13s7p) for Cr(6+) (1S) by a standard procedure. For evaluation of the quality of those basis sets in molecular calculations, we have accomplished studies of total and orbital (HOMO and HOMO-1) energies at the HF-Roothaan level for the molecular species of our interest. The results obtained with the contracted basis sets are compared to the values obtained with our extended basis sets and to the standard 6-311G basis set from literature. Finally, the contracted basis sets are enriched with polarization function and then utilized in the theoretical interpretation of IR-spectrum of hexaaquachromium (III) ion, [Cr(H(2)O)(6)](3+), tetraoxochromium (IV) ion, [CrO(4)](4-), and tetraoxochromium (VI) ion, [CrO(4)](2-). The respective theoretical harmonic frequencies and IR-intensities were computed at the density functional theory (DFT) level. In the DFT calculations we employed the Becke's 1988 functional using the LYP correlation functional. The comparison between the results obtained and the corresponding experimental values indicates a very good description of the IR-spectra of the molecular ions studied, and that the GCHF method is still a legitimate alternative for selection of Gaussian basis sets. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The energy spectrum of cosmic rays between 10(16) eV and 10(18) eV, derived from measurements of the shower size (total number of charged particles) and the total muon number of extensive air showers by the KASCADE-Grande experiment, is described. The resulting all-particle energy spectrum exhibits strong hints for a hardening of the spectrum at approximately 2 . 10(16) eV and a significant steepening at approximate to 8 . 10(16) eV. These observations challenge the view that the spectrum is a single power law between knee and ankle. Possible scenarios generating such features are discussed in terms of astrophysical processes that may explain the transition region from galactic to extragalactic origin of cosmic rays. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Carbon tetrafluoride (CF4) is included as a greenhouse gas within the Kyoto Protocol. There are significant discrepancies in the reported integrated infrared (IR) absorption cross section of CF4 leading to uncertainty in its contribution to climate change. To reduce this uncertainty, the IR spectrum of CF4 was measured in two different laboratories, in 0 933 hPa of air diluent at 296 +/- 2K over the wavelength range 600-3700 cm(-1) using spectral resolutions of 0.03 or 0.50 cm(-1). There was no discernable effect of diluent gas pressure or spectral resolution on the integrated IR absorption, and a value of the integrated absorption cross section of (1.90 +/- 0.17) x 10(-16) cm(2) molecule(-1) cm(-1) was derived. The radiative efficiency (radiative forcing per ppbv) and GWP (relative to CO2) of CF4 were calculated to be 0.102 W m(-2) ppbv(-1) and 7200 (100 year time horizon). The GWP for CF4 calculated herein is approximately 30% greater than that given by the Intergovernmental Panel on Climate Change (IPCC) [ 2002] partly due to what we believe to be an erroneously low value for the IR absorption strength of CF4 assumed in the calculations adopted by the IPCC. The radiative efficiency of CF4 is predicted to decrease by up to 40% as the CF4 forcing starts to saturate and overlapping absorption by CH4, H2O, and N2O in the atmosphere increases over the period 1750-2100. The radiative forcing attributable to increased CF4 levels in the atmosphere from 1750 to 2000 is estimated to be 0.004 W m(-2) and is predicted to be up to 0.033 W m(-2) from 2000 to 2100, dependent on the scenario.
Resumo:
The IR-spectrum of the isonicotinamide molecule (C(2)H(2)NC(3)H(2)CONH(2)) is studied by means of theoretical and experimental methods. For an appropriate representation of the molecular environment, Gaussian basis sets to the atoms of these molecule are built and then contracted (5s and 6s5p). For evaluation of the quality of contracted basis sets in molecular calculations, we have accomplished calculations of the total and the orbital (HOMO and HOMO-1) energies in the HF-Roothaan method for the molecule studied. The results obtained with the contracted basis sets [5s/6s5p] are compared to values obtained with our (21s/22s14p) basis sets and with those obtained with the D95, 6-31G, and 6-311G basis sets from literature. It was added one d polarization function in the [6s5p] contracted basis set for C ((3)P) atom, which was used in combination with the basis sets for H ((2)S), N ((4)S). and O((3)P) atoms to calculate the infrared spectrum of isonicotinamide. The calculations were performed at B3LYP level and were compared to corresponding experimental values also obtained in our laboratory. The theoretical results in comparison with the corresponding experimental values indicate a very good interpretation of the IR-spectrum and that the strategy of an appropriate representation of the molecular environment through the basis sets is an effective alternative to investigate vibrational theoretical properties of the nicotinamide molecule. (c) 2006 Published by Elsevier B.V.
Resumo:
We report on high power issues related to the reliability of fibre Bragg gratings inscribed with an infrared femtosecond laser using the point-by-point writing method. Conventionally, fibre Bragg gratings have usually been written in fibres using ultraviolet light, either holographically or using a phase mask. Since the coating is highly absorbing in the UV, this process normally requires that the protective polymer coating is stripped prior to inscription, with the fibre then being recoated. This results in a time consuming fabrication process that, unless great care is taken, can lead to fibre strength degradation, due to the presence of surface damage. The recent development of FBG inscription using NIR femtosecond lasers has eliminated the requirement for the stripping of the coating. At the same time the ability to write gratings point-by-point offers the potential for great flexibility in the grating design. There is, however, a requirement for reliability testing of these gratings, particularly for use in telecommunications systems where high powers are increasingly being used in long-haul transmission systems making use of Raman amplification. We report on a study of such gratings which has revealed the presence of broad spectrum power losses. When high powers are used, even at wavelengths far removed from the Bragg condition, these losses produce an increase in the fibre temperature due to absorption in the coating. We have monitored this temperature rise using the wavelength shift in the grating itself. At power levels of a few watts, various temperature increases were experienced ranging from a few degrees up to the point where the buffer completely melts off the fibre at the grating site. Further investigations are currently under way to study the optical loss mechanisms in order to optimise the inscription mechanism and minimise such losses.
Resumo:
Supporting students with Autism Spectrum Disorders (ASD) in inclusive settings presents both opportunities and significant challenges to school communities. This study, which explored the lived-experience of nine students with ASD in an inclusive high school in Australia, is based on the belief that by listening to the voices of students, school communities will be in a better position to collaboratively create supportive learning and social environments. The findings of this small-scale study deepen our knowledge from the student perspective of the inclusive educational practices that facilitate and constrain the learning and participation of students with ASD. The students’ perspectives were examined in relation to the characteristics of successful inclusive schools identified by Kluth. Implications for inclusive educational practice that meets the needs of students with ASD are presented.
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism
Resumo:
Listening to and reflecting on the voices and personal stories of adolescent students with an autism spectrum disorder (ASD) is critically important to developing more inclusive approaches to their education. This article considers the experiences of nine adolescents with an ASD on their inclusive education in a large urban secondary school in Australia. These educational experiences were mapped onto four themes emanating from a similar study by Humphrey and Lewis from the United Kingdom. The results from both studies suggest that although students with ASD are having positive and enabling educational experiences, a number of common inhibitors continue to prevent them from taking full advantage of their schooling. By listening to the voices of students with ASD, specific enablers and inhibitors to promoting successful educational experiences are identified, and recommendations for practice are put forward to better support the education not only of students with ASD but all students.
Resumo:
Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.
Resumo:
Three novel metal (II) phthalocyanine complexes were synthesized by cyclic tetramerisation reaction of a dicyano benzene component and different metal ions (Pd2+, Co2+, Zn2+). The structure of complexes was confirmed by elemental analysis, mass and IR spectrum. The excellent solubility of the complexes in benzene enabled us to obtain films by a spin-coating method. The films were characterized by IR, electronic spectral and AFM. The gas sensing properties to NO2 of the metal (II) phthalocyanine complex films were studied. In addition, the effects of different metal ions and the gas sensing temperature on the sensing properties were studied. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The single-sided and dual-sided high reflective mirrors were deposited with ion-beam sputtering (IBS). When the incident light entered with 45 degrees, the reflectance of p-polarized light at 1064 nm exceeded 99.5%. Spectrum was gained by spectrometer and weak absorption of coatings was measured by surface thermal lensing (STL) technique. Laser-induced damage threshold (LIDT) was determined and the damage morphology was observed with Lecia-DMRXE microscope simultaneously. The profile of coatings was measured with Mark III-GPI digital interferometer. It was found that the reflectivity of mirror exceeded 99.9% and its absorption was as low as 14 ppm. The reflective bandwidth of the dual-sided sample was about 43 nm wider than that of single-sided sample, and its LIDT was as high as 28 J/cm2, which was 5 J/cm2 higher than that of single-sided sample. Moreover, the profile of dual-sided sample was better than that of substrate without coatings.
Resumo:
The high reflection (HR) mirror composed of dielectric stacks with excellent spectrum characteristics and high damage resistant ability is critical for fabricating multilayer dielectric (MLD) grating for pulse compressor. The selection of the SiO2 material as the top layer of the HR mirror for grating fabrication is beneficial for improving the laser-induced damage threshold of MLD grating as well as minimizing the standing-wave effect in the photoresist during the exposure process. Based on an (HLL) H-9 design comprising quarter-waves of HfO2 ( H) and half-waves of SiO2 ( L), we obtain an optimal design of the HR mirror for MLD grating, the SiO2 top layer of which is optimized with a merit function including both the diffraction efficiency of the MLD grating and the electric field enhancement in the grating. Dependence of the performance of the MLD grating on the fabrication error of the dielectric mirror is analysed in detail. The HR mirror is also fabricated by E-beam evaporation, which shows good spectral characteristics at the exposure wavelength of 413 nm and at the operation wavelength of 1053 nm and an average damage threshold of 10 J cm(-2) for a 12 ns pulse.
Resumo:
The Principle of optical thin film was used to calculate the feasibility of improving the light extraction efficiency of GaN/GaAs optical devices by wafer-bonding technique. The calculated results show that the light extraction efficiency of bonded samples can be improved by 2.66 times than the as-grown GaN/GaAs samples when a thin Ni layer was used as adhesive layer and Ag layer as reflective layer. Full reflectance spectrum comparison shows that reflectivity for the incident light of 459.2 nm of the bonded samples was improved by 2.4 times than the as-grown samples, which is consistent with the calculated results.