996 resultados para IPS-Empress 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Materials and methods. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0-S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) Results. All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. Conclusions. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic. © 2013 Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the clinical fracture rate of crowns fabricated with the pressable, leucite-reinforced ceramic IPS Empress, and relate the results to the type of tooth restored. Materials and Methods: The database SCOPUS was searched for clinical studies involving full-coverage crowns made of IPS Empress. To assess the fracture rate of the crowns in relation to the type of restored tooth and study, Poisson regression analysis was used. Results: Seven clinical studies were identified involving 1,487 adhesively luted crowns (mean observation time: 4.5 +/- 1.7 years) and 81 crowns cemented with zinc-phosphate cement (mean observation time: 1.6 +/- 0.8 years). Fifty-seven of the adhesively luted crowns fractured (3.8%). The majority of fractures (62%) occurred between the third and sixth year after placement. There was no significant influence regarding the test center on fracture rate, but the restored tooth type played a significant role. The hazard rate (per year) for crowns was estimated to be 5 in every 1,000 crowns for incisors, 7 in every 1,000 crowns for premolars, 12 in every 1,000 crowns for canines, and 16 in every 1,000 crowns for molars. One molar crown in the zinc-phosphate group fractured after 1.2 years. Conclusion: Adhesively luted IPS Empress crowns showed a low fracture rate for incisors and premolars and a somewhat higher rate for molars and canines. The sample size of the conventionally luted crowns was too small and the observation period too short to draw meaningful conclusions. Int J Prosthodont 2010;23:129-133.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relentless pursuit by cosmetic dentistry brought the evolution of materials ceramics. The IPS-Empress system was upgrading of indirect restorations based on lithium disilicate. The ceramic restoration posterior allow a new esthetic approach due to its translucency and resistance without any weakening of the remaining dental element, being an option more conservative when compared to conventional prosthetic restorations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This in vitro study compared the effects of a gold alloy (Degulor M), four dental ceramics (IPS Empress, IPS Empress 2, Duceram Plus, Duceram. LFC) and a laboratory-processed composite (Targis) on the wear of human enamel. The amount of wear of the enamel (dental cusps) and restorative materials (disks) were tested in water at 37 degrees C under standard load (20 N), with a chewing rate of 1.3 Hz and was determined after 150,000 and 300,000 cycles. Before the test, the average surface roughness of the restorative materials was analyzed using the Ra parameter. The results of this study indicate that Targis caused enamel wear similar to Degulor M and resulted in significantly less wear than all the ceramics tested. IPS Empress provoked the greatest amount of enamel wear and Degulor M caused less vertical dimension loss. Targis could be an appropriate alternative material to ceramic, because it is esthetic and produces opposing enamel wear comparable to gold alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated: 1) the effect of different ceramics on light attenuation that could affect microhardness, measured as the Knoop Hardness Number (KHN), of a resin cement immediately and 24 hours after polymerization and 2) the effect of different activation modes (direct light-activation, light activation through ceramics and chemical activation) on the KHN of a resin cement.Resin cement Rely X ARC (3M ESPE) specimens 5.0 mm in diameter and 1.0 nun thick were made in a Teflon mold covered with a polyester film. The cement was directly light activated for 40 seconds with an XL 2500 curing unit (3M ESPE) with 650 mW/cm(2), light activated through ceramic discs of Duceram Plus (DeguDent), Cergogold (DeguDent), IPS Empress (Ivoclar), IPS Empress 2 (Ivoclar), Procera. (NobelBiocare), In Ceram Alumina (Vita) and Cercon (DeguDent), having a 1.2 mm thickness or chemically activated without light application. The resin cement specimens were flattened, and KHN was obtained using an HMV 2 microhardness tester (Shimadzu) with a load of 50 g applied for 15 seconds 100 pin from the irradiated surface immediately and after storage at 37 degrees C for 24 hours. Ten measurements were made for each specimen, with three specimens for each group at each time. The data were submitted to ANOVA and Tukey's test (p=0.05). The KHN of the resin cement was not only affected by the mode of activation, but also by the post-activation testing time. The mean KHN of the resin cement for chemical activation and through all ceramics showed statistically significant lower values compared to direct activation immediately and at 24 hours. The KHN for 24 hours post-activation was always superior to the immediate post-activation test except with direct activation. The most opaque ceramics resulted in the lowest KHN values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. This study compared the shear bond strength (SBS) and microtensile (MTBS) testing methodologies for core and veneering ceramics in four types of all-ceramic systems.Methods. Four different ceramic veneer/core combinations, three of which were feldspathic and the other a fluor-apatite to their respectively corresponding cores, namely leucitereinforced ceramic ((IPS)Empress, Ivoclar), low leucite-reinforced ceramic (Finesse, Ceramco), glass-infiltrated alumina (In-Ceram Alumina, Vita) and lithium disilicate ((IPS)Empress 2, Ivoclar) were used for SBS and MTBS tests. Ceramic cores (N = 40, n = 10/group for SBS test method, N=5blocks/group for MTBS test method) were fabricated according to the manufacturers' instructions (for SBS: thickness, 3 mm; diameter, 5 mm and for MTBS: 10 mm x 10 mm x 2 mm) and ultrasonically cleaned. The veneering ceramics (thickness: 2 mm) were vibrated and condensed in stainless steel moulds and fired onto the core ceramic materials. After trying the specimens in the mould for minor adjustments, they were again ultrasonically cleaned and embedded in PMMA. The specimens were stored in distilled water at 37 degrees C for 1 week and bond strength tests were performed in universal testing machines (cross-head speed: 1mm/min). The bond strengths (MPa +/- S.D.) and modes of failures were recorded.Results. Significant difference between the two test methods and all-ceramic types were observed (P < 0.05) (2-way ANOVA, Tukey's test and Bonferroni). The mean SBS values for veneering ceramic to lithium disilicate was significantly higher (41 +/- 8 MPa) than those to low leucite (28 +/- 4 MPa), glass-infiltrated (26 +/- 4 MPa) and leucite-reinforced (23 +/- 3 MPa) ceramics, while the mean MTBS for low leucite ceramic was significantly higher (15 +/- 2 MPa) than those of leucite (12 +/- 2 MPa), glass-infiltrated (9 +/- 1 MPa) and lithium disilicate ceramic (9 +/- 1 MPa) (ANOVA, P < 0.05).Significance. Both the testing methodology and the differences in chemical compositions of the core and veneering ceramics influenced the bond strength between the core and veneering ceramic in bilayered all-ceramic systems. (c) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of the Problem: the ceramic composition and surface microstructure of all-ceramic restorations are important components of an effective bonding substrate. Hydrofluoric acid and sandblasting are well-known procedures for surface treatment; however, surface treatment for high alumina-containing and lithium disilicate ceramics have not been fully investigated.Purpose: This in vitro study evaluated the tensile bond strength of resin cement to two types of ceramic systems with different surface treatments.Methods and Materials: Thirty specimens of each ceramic system were made according to the manufacturer's instructions and embedded in polyester resin. Specimens of In-Ceram Alumina [1] and IPS Empress 2 [E] were distributed to three groups with differing surface treatments (n=10): sandblasting with 50 jam aluminum oxide (APA); sandblasting with 110 pm aluminum oxide modified with silica particles (ROCATEC System-RS); a combination of sandblasting with APA and 10% hydrofluoric acid etching (HA) for two minutes on In-Ceram and for 20 seconds for IPS Empress 2. After the respective surface treatments, all the specimens were silanated, and Rely-X resin cement was injected onto the ceramic surface and light polymerized. The specimens were stored in distilled water at 37 degrees C for 24 hours and thermally cycled 1,100 times (5 degrees C/55 degrees C). The tensile bond strength test was performed in a universal testing machine at a 0.5 mm/minute crosshead speed.Results: the mean bond strength values (AWa) for IPS Empress 2 were 12.01 +/- 5.93 (EAPA), 10.34 +/- 1.77 (ERS) and 14.49 +/- 3.04 (EHA). The mean bond strength values for In-Ceram Alumina were 9.87 +/- 2.40 JAPA) and 20.40 +/- 6.27 (IRS). All In-Ceram specimens treated with 10% hydrofluoric acid failed during thermal cycling.Conclusion: the Rocatec system was the most effective surface treatment for In-Ceram Alumina ceramics; whereas, the combination of aluminum oxide sandblasting and hydrofluoric acid etching for 20 seconds worked more effectively for Empress 2 ceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT