961 resultados para IPS Empress ceramic
Resumo:
Purpose: The aim of this study was to evaluate the clinical fracture rate of crowns fabricated with the pressable, leucite-reinforced ceramic IPS Empress, and relate the results to the type of tooth restored. Materials and Methods: The database SCOPUS was searched for clinical studies involving full-coverage crowns made of IPS Empress. To assess the fracture rate of the crowns in relation to the type of restored tooth and study, Poisson regression analysis was used. Results: Seven clinical studies were identified involving 1,487 adhesively luted crowns (mean observation time: 4.5 +/- 1.7 years) and 81 crowns cemented with zinc-phosphate cement (mean observation time: 1.6 +/- 0.8 years). Fifty-seven of the adhesively luted crowns fractured (3.8%). The majority of fractures (62%) occurred between the third and sixth year after placement. There was no significant influence regarding the test center on fracture rate, but the restored tooth type played a significant role. The hazard rate (per year) for crowns was estimated to be 5 in every 1,000 crowns for incisors, 7 in every 1,000 crowns for premolars, 12 in every 1,000 crowns for canines, and 16 in every 1,000 crowns for molars. One molar crown in the zinc-phosphate group fractured after 1.2 years. Conclusion: Adhesively luted IPS Empress crowns showed a low fracture rate for incisors and premolars and a somewhat higher rate for molars and canines. The sample size of the conventionally luted crowns was too small and the observation period too short to draw meaningful conclusions. Int J Prosthodont 2010;23:129-133.
Resumo:
Objective. To evaluate the surface roughness of IPS Empress 2 ceramic when treated with different finishing/polishing protocols. Materials and methods. Sixteen specimens of IPS Empress 2 ceramic were made from wax patterns obtained using a stainless steel split mold. The specimens were glazed (Stage 0-S0, control) and divided into two groups. The specimens in Group 1 (G1) were finished/polished with a KG Sorensen diamond point (S1), followed by KG Sorensen siliconized points (S2) and final polishing with diamond polish paste (S3). In Group 2 (G2), the specimens were finished/polished using a Shofu diamond point (S1), as well as Shofu siliconized points (S2) and final polishing was performed using Porcelize paste (S3). After glazing (S0) and following each polishing procedure (S1, S2 or S3), the surface roughness was measured using TALYSURF Series 2. The average surface roughness results were analyzed using ANOVA followed by Tukey post-hoc tests (α = 0.01) Results. All of the polishing procedures yielded higher surface roughness values when compared to the control group (S0). S3 yielded lower surface roughness values when compared to S1 and S2. Conclusions. The proposed treatments negatively affected the surface roughness of the glazed IPS Empress 2 ceramic. © 2013 Informa Healthcare.
Resumo:
This study evaluated the five-year clinical performance of ceramic inlays and onlays made with two systems: sintered Duceram (Dentsply-Degussa) and pressable IPS Empress (Ivoclar Vivadent). Eighty-six restorations were placed by a single operator in 35 patients with a median age of 33 years. The restorations were cemented with dual-cured resin cement (Variolink II, Ivoclar Vivadent) and Syntac Classic adhesive under rubber dam. The evaluations were conducted by two independent investigators at baseline, and at one, two, three, and five years using the modified United States Public Health Service (USPHS) criteria. At the five-year recall, 26 patients were evaluated (74.28%), totalling 62 (72.09%) restorations. Four IPS restorations were fractured, two restorations presented secondary caries (one from IPS and one from Duceram), and two restorations showed unacceptable defects at the restoration margin and needed replacement (one restoration from each ceramic system). A general success rate of 87% was recorded. The Fisher exact test revealed no significant difference between Duceram and IPS Empress ceramic systems for all aspects evaluated at different recall appointments (p>0.05). The McNemar chi-square test showed significant differences in relation to marginal discoloration, marginal integrity, and surface texture between the baseline and five-year recall for both systems (p<0.001), with an increased percentage of Bravo scores. However, few Charlie or Delta scores were attributed to these restorations. In conclusion, these two types of ceramic materials demonstrated acceptable clinical performance after five years
Resumo:
STATEMENT OF PROBLEM: Long-term fluoride application on the teeth of patients receiving radiation therapy for head and neck tumors results in excessive staining and roughening of ceramic restorations. PURPOSE: The purpose of this in vitro study was to compare the staining effects of 2 fluoride treatments on ceramic disks by simulating 1 year of clinical exposure at 10 minutes per day. In addition, 2 different surface preparations were tested. MATERIAL AND METHODS: Eighty ceramic disks (IPS Empress), 20 x 2 mm, were fabricated. Half of the disks were glazed, and the remaining disks were polished. All disks were brushed for 3 minutes with a soft-bristle power toothbrush and mild dentifrice (baseline) and were immersed in 1 of the 2 fluoride products (0.4% SnF(2), Gel-Kam Gel, or 1.1% NaF, Prevident 5000) for 10 days (n=20). Means and standard deviations of color change (Delta E), surface roughness (Ra, um), and surface gloss (GU) of the ceramic material were measured with a reflection spectrophotometer, a profilometer, and a gloss meter, respectively, at baseline and after fluoride treatment. Two- and 3-way ANOVA (alpha=.05), with surface preparation (polished vs. glazed) and fluoride treatment (0.4% SnF(2) or 1.1% NaF) as independent variables and condition (baseline vs. after fluoride treatment) as a repeated measure, was used to analyze the data. Fisher's PLSD intervals (alpha=.05) were calculated for comparisons among the means. RESULTS: The polished specimens had significantly higher Delta E values, significantly higher surface gloss values, and significantly lower surface roughness values than the glazed specimens before fluoride treatment (P<.001). After both fluoride treatments, ceramic disks exhibited significantly higher surface roughness values when polished and significantly lower surface gloss values when glazed or polished (P<.001). The glazed specimens presented significantly higher surface roughness (P<.001) and lower surface gloss values (P<.001) when treated with 0.4% SnF(2) as compared to NaF. For the polished specimens, there was no significant difference in surface roughness and surface gloss values between the 2 fluoride treatments. CONCLUSIONS: Use of 0.4% SnF(2) and 1.1% NaF gels, in vitro, caused significant color change in the polished IPS Empress ceramic disks. Polishing of the ceramic surface before immersion in either fluoride agent caused the ceramic tested to be more resistant to etching by the 2 solutions tested. The NaF caused less deterioration of the porcelain surface and was less stain inducing than SnF(2).
Resumo:
This study sought to investigate the surface roughness and the adherence of Streptococcus mutans (in the presence and absence of saliva) to ceramics and composites. The early dental biofilms formed in situ on the materials were illustrated, using scanning electron microscopy (SEM). Feldspathic and leucite/feldspathic ceramics and microhybrid and microfilled composites were evaluated. Human dental enamel was used as the control. Standardized specimens of the materials were produced and surface roughness was analyzed. The adhesion tests were carried out in 24-well plates and colony forming units (CFU/mL) were evaluated. Values of roughness (μm) and adherence (CFU/mL) were analyzed statistically. Of all the surfaces tested, enamel was the roughest. Leucite/feldspathic ceramics were rougher than the feldspathic ceramic, while composites were similar statistically. Enamel offered the highest level of adherence to uncoated and saliva-coated specimens, while the leucite/feldspathic ceramic demonstrated greater adherence than the feldspathic ceramic and the composites were similar statically. The rougher restorative materials increased the adherence of S, mutans on the material surfaces.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: To evaluate the hypothesis that a process of hydrofluoric acid precipitate neutralization and fatigue load cycling performed on human premolars restored with ceramic inlays had an influence on microtensile bond strength results (MTBS). Methods: MOD inlay preparations were performed in 40 premolars (with their roots embedded in acrylic resin). Forty ceramic restorations were prepared using glass-ceramic (IPS Empress). The inner surfaces of all the restorations were etched with 10% hydrofluoric acid for 60 seconds, rinsed with water and dried. The specimens were divided into two groups (N=20): 1-without neutralization; 2-with neutralization. All the restorations were silanized and adhesively cemented (self-curing and self-etching luting composite system, Multilink). Ten premolars from each group were submitted to mechanical cycling (1,400,000 cycles, 50N, 37 degrees C). After cycling, the samples were sectioned to produce non-trimmed beam specimens (vestibular dentin-restoration-lingual dentin set), which were submitted to microtensile testing. Results: Bond strength was significantly affected by the surface treatment (p<0.0001) (no neutralization > neutralization) and mechanical cycling (p<0.0001) (control > cycling) (2-way ANOVA and Tukey test, alpha=.05). Conclusion: Hydrofluoric acid precipitate neutralization appears to significantly damage the resin bond to glass-ceramic and should not be recommended. The clinical simulation of the specimens, by using mechanical cycling, is important when evaluating the ceramic-dentin bond.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of the Problem: the ceramic composition and surface microstructure of all-ceramic restorations are important components of an effective bonding substrate. Hydrofluoric acid and sandblasting are well-known procedures for surface treatment; however, surface treatment for high alumina-containing and lithium disilicate ceramics have not been fully investigated.Purpose: This in vitro study evaluated the tensile bond strength of resin cement to two types of ceramic systems with different surface treatments.Methods and Materials: Thirty specimens of each ceramic system were made according to the manufacturer's instructions and embedded in polyester resin. Specimens of In-Ceram Alumina [1] and IPS Empress 2 [E] were distributed to three groups with differing surface treatments (n=10): sandblasting with 50 jam aluminum oxide (APA); sandblasting with 110 pm aluminum oxide modified with silica particles (ROCATEC System-RS); a combination of sandblasting with APA and 10% hydrofluoric acid etching (HA) for two minutes on In-Ceram and for 20 seconds for IPS Empress 2. After the respective surface treatments, all the specimens were silanated, and Rely-X resin cement was injected onto the ceramic surface and light polymerized. The specimens were stored in distilled water at 37 degrees C for 24 hours and thermally cycled 1,100 times (5 degrees C/55 degrees C). The tensile bond strength test was performed in a universal testing machine at a 0.5 mm/minute crosshead speed.Results: the mean bond strength values (AWa) for IPS Empress 2 were 12.01 +/- 5.93 (EAPA), 10.34 +/- 1.77 (ERS) and 14.49 +/- 3.04 (EHA). The mean bond strength values for In-Ceram Alumina were 9.87 +/- 2.40 JAPA) and 20.40 +/- 6.27 (IRS). All In-Ceram specimens treated with 10% hydrofluoric acid failed during thermal cycling.Conclusion: the Rocatec system was the most effective surface treatment for In-Ceram Alumina ceramics; whereas, the combination of aluminum oxide sandblasting and hydrofluoric acid etching for 20 seconds worked more effectively for Empress 2 ceramics.
Resumo:
Statement of problem. It is not clear how different glass ceramic surface pretreatments influence the bonding capacity of various luting agents to these surfaces.Purpose. The purpose of this study was to evaluate the microtensile bond strength (mu TBS) of 3 resin cements to a lithia disilicate-based ceramic submitted to 2 surface conditioning treatments.Material and methods. Eighteen 5 X 6 X 8-mm ceramic (IPS Empress 2) blocks were fabricated according to manufacturer's instructions and duplicated in composite resin (Tetric Ceram). Ceramic blocks were polished and divided into 2 groups (n=9/treatment): no conditioning (no-conditioning/control), or 5% hydrofluoric acid etching for 20 seconds and silanization for 1 minute (HF + SIL). Ceramic blocks were cemented to the composite resin blocks with I self-adhesive universal resin cement (RelyX Unicem) or 1 of 2 resin-based luting agents (Multilink or Panavia F), according to the manufacturer's instructions. The composite resin-ceramic blocks were stored in humidity at 37 degrees C for 7 days and serially sectioned to produce 25 beam specimens per group with a 1.0-mm(2) cross-sectional area. Specimens were thermal cycled (5000 cycles, 5 degrees C-55 degrees C) and tested in tension at 1 mm/min. Microtensile bond strength data (MPa) were analyzed by 2-way analysis of variance and Tukey multiple comparisons tests (alpha=.05). Fractured specimens were examined with a stereomicroscope (X40) and classified as adhesive, mixed, or cohesive.Results. The surface conditioning factor was significant (HF+SIL > no-conditioning) (P<.0001). Considering the unconditioned groups, the mu TBS of RelyX Unicem was significantly higher (9.6 +/- 1.9) than that of Multilink (6.2 +/- 1.2) and Panavia F (7.4 +/- 1.9). Previous etching and silanization yielded statistically higher mu TBS values for RelyX Unicem (18.8 +/- 3.5) and Multilink (17.4 +/- 3.0) when compared to Panavia F (15.7 +/- 3.8). Spontaneous debonding after thermal cycling was detected when luting agents were applied to untreated ceramic surfaces.Conclusion. Etching and silanization treatments appear to be crucial for resin bonding to a lithia disilicate-based ceramic, regardless of the resin cement used.
Resumo:
Background: Data on stress distribution in tooth-restoration interface with different ceramic restorative materials are limited. The aim of this chapter was to assess the stress distribution in the interface of ceramic restorations with laminate veneer or full-coverage crown with two different materials (lithium dissilicate and densely sintered aluminum oxide) under different loading areas through finite element analysis. Materials and Methods: Six two-dimensional finite element models were fabricated with different restorations on natural tooth: laminate veneer (IPS Empress, IPS Empress Esthetic and Procera AllCeram) or full-coverage crown (IPS e.max Press and Procera AllCeram). Two different loading areas (L) (50N) were also determined: palatal surface at 45° in relation to the long axis of tooth (L1) and perpendicular to the incisal edge (L2). A model with higid natural tooth was used as control. von Mises equivalent stress (σ vM) and maximum principal stress (σ max) were obtained on Ansys software. Results: The presence of ceramic restoration increased σ vM and σ max in the adhesive interface, mainly for the aluminum oxide (Procera AllCeram system) restorations. The full-coverage crowns generated higher stress in the adhesive interface under L1 while the same result was observed for the laminate veneers under L2. Conclusions: Lithium dissilicate and densely sintered aluminum oxide restorations exhibit different behavior due to different mechanical properties and loading conditions. © 2011 Nova Science Publishers, Inc.
Resumo:
This study evaluated three surface treatments and their effects on the shear bond strength between a resin cement and one of three ceramics. The ceramic surfaces were evaluated with scanning electron microscopy (SEM ) as well. Specimens were treated with 50 μm aluminum oxide airborne particles, 10% hydrofluoric acid etching, or a combination of the two. Using a matrix with a center hole (5.0 mm × 3.0 mm), the ceramic bonding areas were filled with resin cement following treatment. The specimens were submitted to thermal cycling (1,000 cycles) and the shear bond strength was tested (0.5 mm/minute). The failure mode and the effect of surface treatment were analyzed under SEM . Data were submitted to ANOVA and a Tukey test (α = 0.05). Duceram Plus and IPS Empress 2 composite specimens produced similar shear bond strength results (p > 0.05), regardless of the treatment method used. Hydrofluoric acid decreased the shear bond strength of In-Ceram Alumina specimens. For all materials, surface treatments changed the morphological surface. All treatments influenced the shear bond strength and failure mode of the ceramic/resin cement composites.
Resumo:
The fracture of porcelain structures have been related in either natural dentition or implant-supported restorations. Techniques using a composite resin or indirect methods can be used. This article presents a porcelain fracture on implant-supported metal-ceramic restoration. IPS Empress e.max laminate veneer restoration was used to repair the fracture. With this technique, it was possible to restore aesthetics and function, combined with low cost and patient satisfaction.
Resumo:
The relentless pursuit by cosmetic dentistry brought the evolution of materials ceramics. The IPS-Empress system was upgrading of indirect restorations based on lithium disilicate. The ceramic restoration posterior allow a new esthetic approach due to its translucency and resistance without any weakening of the remaining dental element, being an option more conservative when compared to conventional prosthetic restorations.