968 resultados para INORGANIC PYROPHOSPHATE
Resumo:
Purified membrane-bound alkaline phosphatase from rat osseous plate hydrolyzed pyrophosphate in the presence of magnesium ions, with a specific activity of 92.7 U/mg. Optimal apparent pH for pyrophosphatase activity was 8.0 and it remained unchanged on increasing the pyrophosphate concentration. In the absence of magnesium ions the enzyme had a K-m = 88 mu M and V = 36.7 U/mg for pyrophosphate and no inhibition by excess substrate was observed. Pyrophosphatase activity was rapidly destroyed at temperatures above 40 degrees C, but magnesium ions apparently protected the enzyme against danaturation. Sodium metavanadate (Ki = 1.0 mM) was a competitive inhibitor of pyrophosphatase activity, while levamisole (Ki = 8.2 mM) and theophylline (Ki = 7.4 mM) were uncompetitive inhibitors. Magnesium ions (K-0.5 = 1.7 mu M) stimulated pyrophosphatase activity, while cobalt (Ki = 48.5 mu M) and zinc (Ki = 22.0 mu M) ions were non-competitive inhibitors. Manganese and calcium ions had no effect on pyrophosphatase activity. The M-w of the pyrophosphatase: protein was 130 kDa by gel filtration, but a value of 65 kDa was obtained by dissociative gel electrophoresis, suggesting that it was a dimer of apparently identical subunits. These results suggested that pyrophosphatase activity stems from the membrane-bound osseous plate alkaline phosphatase and not from a different protein.
Resumo:
Articular cartilage chondrocytes have the unique ability to elaborate large amounts of extracellular pyrophosphate (PPi), and transforming growth factor beta (TGF beta) appears singular among cartilage regulatory factors in stimulating PPi production. TGF beta caused a time and dose-dependent increase in intracellular and extracellular PPi in human articular chondrocyte cultures. TGF beta and interleukin 1 beta (IL-1 beta) antagonistically regulate certain chondrocyte functions. IL-1 beta profoundly inhibited basal and TGF beta-induced PPi elaboration. To address mechanisms involved with the regulation of PPi synthesis by IL-1 beta and TGF beta, we analyzed the activity of the PPi-generating enzyme NTP pyrophosphohydrolase (NTPPPH) and the PPi-hydrolyzing enzyme alkaline phosphatase. Human chondrocyte NTPPPH activity was largely attributable to plasma cell membrane glycoprotein 1, PC-1. Furthermore, TGF beta induced comparable increases in the activity of extracellular PPi, intracellular PPi, and cellular NTPPPH and in the levels of PC-1 protein and mRNA in chondrocytes as well as a decrease in alkaline phosphatase. All of these TGF beta-induced responses were completely blocked by IL-1 beta. Thus, IL-1 beta may be an important regulator of mineralization in chondrocytes by inhibiting TGF beta-induced PPi production and PC-1 expression.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5`-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5`-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5`-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1- containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1- containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Resumo:
The characterisation of the gene encoding Trypanosoma cruzi CL Brener phosphofructokinase (PFK) and the biochemical properties of the expressed enzyme are reported here. In contradiction with previous reports, the PFK genes of CL Brener and YBM strain T. cruzi were found to be similar to their Leishmania mexicana and Trypanosoma brucei homologs in terms of both kinetic properties and size, with open reading frames encoding polypeptides with a deduced molecular mass of 53,483. The predicted amino acid sequence contains the C-terminal glycosome-targeting tripeptide SKL; this localisation was confirmed by immunofluorescence assays. In sequence comparisons with the genes of other eukaryotes, it was found that, despite being an adenosine triphosphate-dependent enzyme, T. cruzi PFK shows significant sequence similarity with inorganic pyrophosphate-dependent PFKs.
Resumo:
L'arthrose est une maladie dégénérative des articulations due à une dégradation progressive du cartilage. La calcification de l'articulation (essentiellement due à des dépôts de cristaux de phosphate de calcium basique -cristaux BCP-) est une caractéristique de cette maladie. Cependant, le rôle des cristaux BCP reste à déterminer. Nous avons tout d'abord déterminé en utilisant des cultures primaires de chondrocytes que les cristaux de BCP induisaient la production de la cytokine IL-6, via une signalisation intracellulaire implicant les kinase Syk, PI3 et Jak et Stat3. Les cristaux de BCP induisent également la perte de protéoglycanes et l'expression de IL-6 dans des explants de cartlage humain et ces deux effets peuvent être bloqués par un inhibiteur de IL-6, le Tocilizumab. Par ailleurs, nous avons trouvé que l'IL-6 ajouté à des chondrocytes, favorisait la formation de cristax de BCP et augmentait l'expression de gènes impliqués dans le processus de minéralisation : Ank (codant pour un transporteur de pyrophooshate), Annexin5 (codant pour un canal calcique) et Pit-1 (codant pour un transporteur de phoshate). In vivo, les cristaux de BCP injectés dans l'articulation de souris induisent une érosion du cartilage. Dans un modèle murin d'arthrose du genou induit par ménisectomie, nous avons observé la formation progressive de cristaux de BCP. Fait intéressant, la présence de ces cristaux dans l'articulation précédait la destruction du cartilage. Un agent susceptible de bloquer les calcifications tel que le sodium thiosulfate (STS), administré à des souris ménisectomisées, inhibait le dépôt intra-articulaire de ces cristaux ainsi que l'érosion du cartilage. Nous avons identifié ainsi un cercle vicieux dans l'arthrose, les cristaux induisant l'interleukine-6 et l'interleukine-6 induisant la formation de ces cristaux. Nous avons étudié si on pouvait bloquer cette boucle cristaux de BCP-IL6 soit par des agents décalcifiants, soit par des inhibiteurs d'IL-6. In vitro, des anticorps anti IL- 6 ou des inhibiteurs de signalisation, inhibaient significativement IL-6 et la minéralisation induite par IL-6. De même le STS inhibait la formation de ces cristaux et la production de l'IL-6. Tout récemment, nous avons trouvé que des inhibiteurs de la xanthine oxidoréductase étaient aussi capables d'inhiber à la fois la production d'IL-6 et la minéralization des chondrocytes. Finalement, nous avons pu exclure un rôle du système IL-1 dans le modèle d'arthrose induite par ménisectomie, les souris déficientes pour IL-1a/ß, MyD88 et l'inflammasome NLRP3 n'étant pas protégées dans ce modèle d'arthrose. L'ensemble de nos résultats montre que les cristaux BCP sont pathogéniques dans l'arthrose et qu'un inhibiteur de minéralisation tel que le STS ou un inhibiteur de l'interleukine-6 constitueraient des nouvelles thérapies pour l'arthrose. -- Osteoarthritis (OA), the most common degenerative disorder of the joints, results from an imbalance between the breakdown and repair of the cartilage and surrounding articular structures. Joint calcification (essentially due to basic calcium phosphate (BCP) crystal deposition) is a characteristic feature of OA. However, the role of BCP crystal deposition in the pathogenesis of OA remains unclear[1][1]. We first demonstrated that in primary murine chondrocytes exogenous BCP crystals led to IL-6 up-modulation and that BCP crystal signaling pathways involved Syk and PI3 kinases, and also gp130 associated molecules, Jak2 and Stat3. BCP crystals also induced proteoglycan loss and IL-6 expression in human cartilage expiants, (which were significantly reduced by an IL-6 inhibitor). In addition, we found that in chondrocytes exogenous IL-6 promoted calcium-containing crystal formation and up- regulation of genes codifying for proteins involved in the calcification process: the inorganic pyrophosphate transport channel Ank, the calcium channel Annexinö and the sodium/phosphate cotransporter Piti. In vivo, BCP crystals injected into murine knee joints induced cartilage erosion. In the menisectomy model, increasing deposits, identified as BCP crystals, were progressively observed around the joint before cartilage erosion. These deposits strongly correlated with cartilage degradation and IL-6 expression. These results demonstrated that BCP crystals deposition and IL-6 production are mutually reinforcing in the osteoarthritic pathogenic process. We then investigated if we could block the BCP-IL6 loop by either targeting IL-6 production or BCP crystal deposits. Treatment of chondrocytes with anti-IL-6 antibodies or inhibitors of IL-6- signaling pathway significantly inhibited IL-6-induced crystal formation. Similarly, sodium thiosulfate (STS), a well-known systemic calcification inhibitor, decreased crystal deposition as well as HA-induced IL-6 secretion in chondrocytes and, in vivo, it decreased crystal deposits size and cartilage erosion in menisectomized knees. Interestingly, we also found that xanthine-oxidoreductase (XO) inhibitors inhibited both IL-6 production and calcium crystal depositis in chondrocytes. We began to unravel the mechanisms involved in this coordinate modulation of IL-6 and mineralization. STS inhibited Reactive Oxygen Species (ROS) generation and we are currently investigating whether XO represents a major source of ROS in chondrocyte mineralization. Finally, we ruled out that IL-1 activation/signaling plays a role in the murine model of OA induced by menisectomy, as IL-1a/ß, the IL-1 R associated molecule MyD88 and NLRP3 inflammasome deficient mice were not protected in this model of OA. Moreover TLR-1, -2, -4,-6 deficient mice had a phenotype similar to that of wild-type mice. Altogether our results demonstrated a self-amplification loop between BCP crystals deposition and IL-6 production, which represents an aggravating process in OA pathogenesis. As currently prescribed OA drugs are addressing OA symptoms,our results highlight a potential novel treatment strategy whereby inhibitors of calcium- containing crystal formation and IL-6 could be combined to form the basis of a disease modifying treatment and alter the course of OA.
Resumo:
Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.
Resumo:
Endochondral calcification involves the participation of matrix vesicles (MVs), but it remains unclear whether calcification ectopically induced by implants of demineralized bone matrix also proceeds via MVs. Ectopic bone formation was induced by implanting rat demineralized diaphyseal bone matrix into the dorsal subcutaneous tissue of Wistar rats and was examined histologically and biochemically. Budding of MVs from chondrocytes was observed to serve as nucleation sites for mineralization during induced ectopic osteogenesis, presenting a diameter with Gaussian distribution with a median of 306 ± 103 nm. While the role of tissue-nonspecific alkaline phosphatase (TNAP) during mineralization involves hydrolysis of inorganic pyrophosphate (PPi), it is unclear how the microenvironment of MV may affect the ability of TNAP to hydrolyze the variety of substrates present at sites of mineralization. We show that the implants contain high levels of TNAP capable of hydrolyzing p-nitrophenylphosphate (pNPP), ATP and PPi. The catalytic properties of glycosyl phosphatidylinositol-anchored, polidocanol-solubilized and phosphatidylinositol-specific phospholipase C-released TNAP were compared using pNPP, ATP and PPi as substrates. While the enzymatic efficiency (k cat/Km) remained comparable between polidocanol-solubilized and membrane-bound TNAP for all three substrates, the k cat/Km for the phosphatidylinositol-specific phospholipase C-solubilized enzyme increased approximately 108-, 56-, and 556-fold for pNPP, ATP and PPi, respectively, compared to the membrane-bound enzyme. Our data are consistent with the involvement of MVs during ectopic calcification and also suggest that the location of TNAP on the membrane of MVs may play a role in determining substrate selectivity in this micro-compartment.
Resumo:
The D allozyme of placental alkaline phosphatase (PLAP) displays enzymatic properties at variance with those of the common PLAP allozymes. We have deduced the amino acid sequence of the PLAP D allele by PCR cloning of its gene, ALPP Two coding substitutions were found in comparison With the cDNA of the common PLAP F allele, i.e., 692C>G and 1352A>G, which translate into a P209R and E429G substitution. A single nucleotide primer extension (SNuPE) assay was developed using PCR primers that enable the amplification of a 1.9 kb PLAP fragment. Extension primers were then used on this PCR fragment to detect the 692C>G and 1352A>G substitution. The SNuPE assay on these two nucleotide substitutions enabled us to distinguish the PLAP F and D alleles from the PLAP S/I alleles. Functional studies on the D allozyme were made possible by constructing and expressing a PLAP D cDNA, i.e., [Arg209, Gly429] PLAP, into wildtype Chinese hamster ovary cells. We determined the k(cat) and K-m, of the PLAP S, F. and D allozymes using the non,physiological substrate p-nitrophenylphosphate at an optimal pH (9.8) as well as two physiological substrates, i.e., pyridoxal-5'-phosphate and inorganic pyrophosphate at physiological pH (7.5). We found that the biochemical properties of the D allozyme of PLAP are significantly different from those of the common PLAP allozymes. These biochemical findings suggest that a suboptimal enzymatic function by the PLAP D allozyme may be the basis for the apparent negative selective pressure of the PLAP D allele. The development of the SNuPE assay will enable us to test the hypothesis that the PLAP D allele is subjected to intrauterine selection by examining genomic DNA from statistically informative population samples. Hum Mutat 19:258-267, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
We have analyzed 16 missense mutations of the tissue-nonspecific AP (TNAP) gene found in patients with hypophosphatasia. These mutations span the phenotypic spectrum of the disease, from the lethal perinatal/infantile forms to the less severe adult and odontohypophosphatasia. Site-directed mutagenesis was used to introduce a sequence tag into the TNAP cDNA and eliminate the glycosylphosphatidylinositol (GPI)-anchor recognition sequence to produce a secreted epitope-tagged TNAP (setTNAP). The properties of GPI-anchored TNAP (gpiTNAP) and setTNAP were found comparable. After introducing each single hypophosphatasia mutation, the setTNAP and mutant TNAP cDNAs were expressed in COS-1 cells and the recombinant flagged enzymes were affinity purified. We characterized the kinetic behavior, inhibition, and heat stability properties of each mutant using the artificial substrate p-nitrophenylphosphate (pNPP) at pH 9.8. We also determined the ability of the mutants to metabolize two natural substrates of TNAP, that is, pyridoxal-5'-phosphate (PLP) and inorganic pyrophosphate (PPi), at physiological pH. Six of the mutant enzymes were completely devoid of catalytic activity (R54C, R54P, A94T, R206W, G317D, and V365I), and 10 others (A16V, A115V, A160T, A162T, E174K, E174G, D277A, E281K, D361V, and G439R) showed various levels of residual activity. The A160T substitution was found to decrease the catalytic efficiency of the mutant enzyme toward pNPP to retain normal activity toward PPi and to display increased activity toward PLP. The A162T substitution caused a considerable reduction in the pNPPase, PPiase, and PLPase activities of the mutant enzyme. The D277A mutant was found to maintain high catalytic efficiency toward pNPP as substrate but not against PLP or PPi. Three mutations ( E174G, E174K, and E281K) were found to retain normal or slightly subnormal catalytic efficiency toward pNPP and PPi but not against PLP. Because abnormalities in PLP metabolism have been shown to cause epileptic seizures in mice null for the TNAP gene, these kinetic data help explain the variable expressivity of epileptic seizures in hypophosphatasia patients.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Acetone metabolism in the aerobic bacterium Xanthobacter strain Py2 proceeds by a carboxylation reaction forming acetoacetate as the first detectable product. In this study, acetone carboxylase, the enzyme catalyzing this reaction, has been purified to homogeneity and characterized. Acetone carboxylase was comprised of three polypeptides with molecular weights of 85,300, 78,300, and 19,600 arranged in an α2β2γ2 quaternary structure. The carboxylation of acetone was coupled to the hydrolysis of ATP and formation of 1 mol AMP and 2 mol inorganic phosphate per mol acetoacetate formed. ADP was also formed during the course of acetone consumption, but only accumulated at low, substoichiometric levels (≈10% yield) relative to acetoacetate. Inorganic pyrophosphate could not be detected as an intermediate or product of acetone carboxylation. In the absence of CO2, acetone carboxylase catalyzed the acetone-dependent hydrolysis of ATP to form both ADP and AMP, with ADP accumulating to higher levels than AMP during the course of the assays. Acetone carboxylase did not have inorganic pyrophosphatase activity. Acetone carboxylase exhibited a Vmax for acetone carboxylation of 0.225 μmol acetoacetate formed min−1⋅mg−1 at 30°C and pH 7.6 and apparent Km values of 7.80 μM (acetone), 122 μM (ATP), and 4.17 mM (CO2 plus bicarbonate). These studies reveal molecular properties of the first bacterial acetone-metabolizing enzyme to be isolated and suggest a novel mechanism of acetone carboxylation coupled to ATP hydrolysis and AMP and inorganic phosphate formation.
Resumo:
Tonoplast-enriched vesicles isolated from maize (Zea mays L.) coleoptiles and seeds synthesize ATP from ADP and inorganic phosphate (Pi) and inorganic pyrophosphate from Pi. The synthesis is consistent with reversal of the catalytic cycle of the H+-ATPase and H+-pyrophosphatase (PPase) vacuolar membrane-bound enzymes. This was monitored by measuring the exchange reaction that leads to 32Pi incorporation into ATP or inorganic pyrophosphate. The reversal reactions of these enzymes were dependent on the proton gradient formed across the vesicle membrane and were susceptible to the uncoupler carbonyl cyanide p(trifluoromethoxy)-phenylhydrazone and the detergent Triton X-100. Comparison of the two H+ pumps showed that the H+-ATPase was more active than H+-PPase in coleoptile tonoplast vesicles, whereas in seed vesicles H+-PPase activity was clearly dominant. These findings may reflect the physiological significance of these enzymes in different tissues at different stages of development and/or differentiation.
Resumo:
The hydrolytic subunit of the H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1.) prepared from Rubus hispidus cell cultures has been purified from tonoplast-enriched membranes and analysed by SDS-polyacrylamide gel electrophoresis, Only one polypeptide of M(r) 70 000 was recovered with the V-PPase activity after solubilization in the presence of Triton X-100, purification by gel filtration (Superose) and anion exchange (Mono Q) chromatography. This polypeptide strongly cross-reacted with an antibody raised against the V-PPase from Vigna radiata. The tonoplast-enriched fraction was also used to solubilize and reconstitute the-V-PPase. The proteoliposomes showing a PPi-dependent proton transport activity were purified by gel filtration (Superose) and analysed by SDS-polyacrylamide gel electrophoresis. Only one polypeptide of M(r) 70 000 was recovered with the proton-pumping activity. All these data suggest that the native V-PPase from Rubus is composed of a single kind of polypeptide with an M(r) of 70 000 and representing the catalytic subunit.
Resumo:
Inorganic pyrophosphatases (PPases) are essential enzymes for every living cell. PPases provide the necessary thermodynamic pull for many biosynthetic reactions by hydrolyzing pyrophosphate. There are two types of PPases: integral membrane-bound and soluble enzymes. The latter type is divided into two non-homologous protein families, I and II. Family I PPases are present in all kingdoms of life, whereas family II PPases are only found in prokaryotes, including archae. Family I PPases, particularly that from Saccharomyces cerevisiae, are among the most extensively characterized phosphoryl transfer enzymes. In the present study, we have solved the structures of wild-type and seven active site variants of S. cerevisiae PPase bound to its natural metal cofactor, magnesium ion. These structures have facilitated derivation of the complete enzyme reaction scheme for PPase, fulfilling structures of all the reaction intermediates. The main focus in this study was on a novel subfamily of family II PPases (CBSPPase) containing a large insert formed by two CBS domains and a DRTGG domain within the catalytic domain. The CBS domain (named after cystathionine beta-synthase in which it was initially identified) usually occurs as tandem pairs with two or four copies in many proteins in all kingdoms of life. The structure formed by a pair of CBS domains is also known as a Bateman domain. CBS domains function as regulatory units, with adenylate ligands as the main effectors. The DRTGG domain (designated based on its most conserved residues) occurs less frequently and only in prokaryotes. Often, the domain co-exists with CBS domains, but its function remains unknown. The key objective of the current study was to explore the structural rearrangements in the CBS domains induced by regulatory adenylate ligands and their functional consequences. Two CBS-PPases were investigated, one from Clostridium perfringens (cpCBS-PPase) containing both CBS and DRTGG domains in its regulatory region and the other from Moorella thermoacetica (mt CBS-PPase) lacking the DRTGG domain. We additionally constructed a separate regulatory region of cpCBS-PPase (cpCBS). Both full-length enzymes and cpCBS formed homodimers. Two structures of the regulatory region of cpCBS-PPase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate, were solved. The structures were significantly different, providing information on the structural pathway from bound adenylates to the interface between the regulatory and catalytic parts. To our knowledge, these are the first reported structures of a regulated CBS enzyme, which reveal large conformational changes upon regulator binding. The activator-bound structure was more open, consistent with the different thermostabilities of the activator- and inhibitor-bound forms of cpCBS-PPase. The results of the functional studies on wild-type and variant CBS-PPases provide support for inferences made on the basis of structural analyses. Moreover, these findings indicate that CBS-PPase activity is highly sensitive to adenine nucleotide distribution between AMP, ADP and ATP, and hence to the energy level of the cell. CBS-PPase activity is markedly inhibited at low energy levels, allowing PPi energy to be used for cell survival instead of being converted into heat.