969 resultados para INDUCED ACTIVATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The past 15 years has seen the emergence of a new field of neuroscience research based primarily on how the immune system and the central nervous system can interact. A notable example of this interaction occurs when peripheral inflammation, infection or tissue injury activates the hypothalamic- pituitary-adrenal axis (HPA). 2. During such assaults, immune cells release the pro- inflammatory cytokines interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha into the general circulation. 3. These cytokines are believed to act as mediators for HPA axis activation. However, physical limitations of cytokines impede their movement across the blood-brain barrier and, consequently, it has been unclear as to precisely how and where IL-1beta signals cross into the brain to trigger HPA axis activation. 4. Evidence from recent anatomical and functional studies suggests two neuronal networks may be involved in triggering HPA axis activity in response to circulating cytokines. These are catecholamine cells of the medulla oblongata and the circumventricular organs (CVO). 5. The present paper examines the role of CVO in generating HPA axis responses to pro-inflammatory cytokines and culminates with a proposed model based on cytokine signalling primarily involving the area postrema and catecholamine cells in the ventrolateral and dorsal medulla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms sustaining high blood pressure in conscious one-kidney, one-clip Goldblatt rats were evaluated with the use of SK&F 64139, a phenylethanolamine N-methyltransferase inhibitor capable of crossing the blood-brain barrier and of captopril, an angiotensin converting enzyme inhibitor. The rats were studied 3 weeks after left renal artery clipping and contralateral nephrectomy. During the developmental phase of hypertension, two groups of rats were maintained on a regular salt (RNa) intake, whereas two other groups were given a low salt (LNa) diet. On the day of the experiment, the base-line mean blood pressure measured in the LNa rats (177.4 +/- 5.2 mm Hg, mean +/- S.E., n = 15) was similar to that measured in the RNa rats (178.7 +/- 5.4 mm Hg, n = 16). SK&F 64139 (12.5 mg p.o.) induced a significantly more pronounced (P less than .001) blood pressure decrease in the RNa rats (-25.6 +/- 3.6 mm Hg, n = 8) than in the LNa rats (-4.3 +/- 3.3 mm Hg, n = 7) during a 90-min observation period. On the other hand, captopril (10 mg p.o.) normalized blood pressure in LNa rats (n = 8), but produced only a 13.4 mm Hg blood pressure drop in RNa rats (n = 8). RNa rats treated with SK&F 64139 were found to have decreased phenylethanolamine N-methyltransferase activity by an average 80% in selected brain stem nuclei when compared with nontreated rats. No significant difference in plasma catecholamine levels was found between the RNa and LNa rats. These results suggest that, in this experimental model of hypertension, the sodium ion might increase the model of hypertension, the sodium ion might increase the vasoconstrictor contribution of the sympathetic system via a centrally mediated neurogenic mechanism while at the same time it decreases the renin-dependency of the high blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent findings have implicated Fas/Fas ligand (FasL) in mediating the death of keratinocytes in spongiotic lesions. We asked whether dying keratinocytes could potentially initiate a protective response of the skin to limit the destruction of the epidermis in the spongiotic areas. In addition to apoptosis, treatment of keratinocyte cultures in vitro with FasL triggers a profound phoshorylation of the epidermal growth factor receptor (EGFR) and of its downstream effectors ERK and protein kinase B (PKB/Akt). Using a variety of inhibitors and blocking antibodies, we demonstrated that: (i) apoptosis is required for the generation of the signal(s) leading to the activation of EGFR, ERK, and Akt; (ii) the activation of EGFR, ERK, and Akt by FasL is indeed mediated by its bona fide receptor Fas; (iii) the activation of EGFR is essential for the subsequent activation of ERK and Akt; and (iv) apoptotic keratinocytes secrete soluble EGFR ligands (including amphiregulin) that are processed from membrane-bound proligand forms by metalloproteinase(s). Our findings demonstrate a potential mechanism for the restriction and repair of spongiotic damage in eczemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μM of propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p > 0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production. © 2012 International Society of Oncology and BioMarkers (ISOBM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preeclampsia (PE) is a specific syndrome of pregnancy, characterized by hypertension and proteinuria. This pathology is associated with hyperuricemia and elevated serum levels of inflammatory cytokines. Uric acid crystals may activate an intracellular complex called inflammasome, which is important for processing and release of inflammatory cytokines. This study investigated the state of monocyte activation, both endogenous and stimulated with monosodium urate (MSU), by gene expression of NLRP1 and NLRP3 receptors as well as their association with inflammatory cytokines expression. Monocytes were obtained from peripheral blood of 23 preeclamptic pregnant women, 23 normotensive pregnant women (NT) and 23 healthy non-pregnant women (NP). Inflammasome activation was evaluated by the gene expression of NLRP1, NLRP3, caspase-1, IL-1 beta, IL-18 and TNF-alpha by RT-qPCR in unstimulated monocytes (endogenous expression), or after cell stimulation with MSU (stimulated expression). The concentration of cytokines was assessed by ELISA. In preeclamptic pregnant women, gene expression of NLRP1, NLRP3, caspase-1, IL-1 beta and TNF-alpha by monocytes stimulated or not with MSU was significantly higher than in NT and NP groups. Stimulation of monocytes from preeclamptic and non-pregnant women with MSU induced increased gene expression of NLRP3, caspase-1 and TNF-alpha in relation to the endogenous expression in these groups, while this was not observed in the NT group. The cytokine determination showed that monocytes from women with PE produced higher endogenous levels of IL-1 beta, IL-18 and TNF-alpha compared to the other groups, while the stimulus with MSU led to higher production of these cytokines in preeclamptic group than in the NT group. In conclusion, the results showed increased basal gene expression of NLRP1 and NLRP3 receptors in monocytes from PE group. These cells stimulation with MSU demonstrates that uric acid plays a role in NLRP3 inflammasome activation, suggesting the participation of this inflammatory complex in the pathogenesis of preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-kappa B) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-kappa B DNA binding activity (NF-kappa Bp50 and NF-kappa Bp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-kappa B pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-kappa B (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-kappa B (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-kappa B signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin (5-HT), opioids and the dorsal periaqueductal grey (DPAG) have been implicated in the pathophysiology of panic disorder. In order to study 5-HT-opioid interaction, the opioid antagonist naloxone was injected either systemically (1 mg/kg, i.p.) or intra-DPAG (0.2 mu g/0.5 mu L) to assess its interference with the effect of chronic fluoxetine (10 mg/kg, i.p., daily for 21 days) or of intra-DPAG 5-HT (8 mu g/0.5 mu L). Drug effects were measured in the one-escape task of the rat elevated T-maze, an animal model of panic. Pretreatment with systemic naloxone antagonized the lengthening of escape latency caused by chronic fluoxetine, considered a panicolytic-like effect that parallels the drug's therapeutic response in the clinics. Pretreatment with naloxone injected intra-DPAG antagonized both the panicolytic effect of chronic fluoxetine as well as that of 5-HT injected intra-DPAG. Neither the performance of the inhibitory avoidance task in the elevated T-maze, a model of generalized anxiety nor locomotion measured in a circular arena was affected by the above drug treatments. These results indicate that the panicolytic effect of fluoxetine is mediated by endogenous opioids that are activated by 5-HT in the DPAG. They also allow reconciliation between the serotonergic and opioidergic hypotheses of panic disorder pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the expression of vascular endothelial growth factor type C (VEGF-C) in oral squamous cell carcinoma (OSCC) cell lines through norepinephrine-induced activation of beta-adrenergic receptors. Human OSCC cell lines (SCC-9 and SCC-25) expressing beta-adrenergic receptors were stimulated with different concentrations of norepinephrine (0.1, 1, and 10 μM) and 1 μMof propranolol, and analyzed after 1, 6, and 24 h. VEGF-C gene expression and VEGF-C production in the cell supernatant were evaluated by real-time PCR and by ELISA, respectively. The results showed that beta-adrenergic receptor stimulation by different concentrations of norepinephrine or blocking by propranolol did not markedly alter VEGF-C expression by SCC-9 and SCC-25 cells. VEGF-C protein levels produced by oral malignant cell lines after stimulation with different norepinephrine concentrations or blocking with propranolol was statistically similar (p>0.05) to those of the control group (nonstimulated OSCC cell lines). Our findings suggest that stimulation of beta-adrenergic receptors by means of norepinephrine does not seem to modulate the VEGF-C expression in OSCC cell lines. These findings reinforce the need for further studies in order to understand the responsiveness of oral cancer to beta-adrenergic receptor stimulation or blockage, especially with regard to VEGF-C production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V(1393)I, K(1584)E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V(1393)I) and TRPM6(K(1584)E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T(1391)) and TRPM6(S(1583)). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V(1393)I) and TRPM6(K(1584)E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V(1393)I) and TRPM6(K(1584)E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Psychological stress delays wound healing but the precise underlying mechanisms are unclear. Macrophages play an important role in wound healing, in particular by killing microbes. We hypothesized that (a) acute psychological stress reduces wound-induced activation of microbicidal potential of human monocyte-derived macrophages (HMDM), and (b) that these reductions are modulated by stress hormone release. Methods Fourty-one healthy men (mean age 35±13 years) were randomly assigned to either a stress or stress-control group. While the stress group underwent a standardized short-term psychological stress task after catheter-induced wound infliction, stress-controls did not. Catheter insertion was controlled. Assessing the microbicidal potential, we investigated PMA-activated superoxide anion production by HMDM immediately before and 1, 10 and 60 min after stress/rest. Moreover, plasma norepinephrine and epinephrine and salivary cortisol were repeatedly measured. In subsequent in vitro studies, whole blood was incubated with norepinephrine in the presence or absence of phentolamine (norepinephrine blocker) before assessing HMDM microbicidal potential. Results Compared with stress-controls, HMDM of the stressed subjects displayed decreased superoxide anion-responses after stress (p’s <.05). Higher plasma norepinephrine levels statistically mediated lower amounts of superoxide anion-responses (indirect effect 95% CI: 4.14–44.72). Norepinephrine-treated HMDM showed reduced superoxide anion-production (p<.001). This effect was blocked by prior incubation with phentolamine. Conclusions Our results suggest that acute psychological stress reduces wound-induced activation of microbicidal potential of HMDM and that this reduction is mediated by norepinephrine. This might have implications for stress-induced impairment in wound healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tec family of tyrosine kinases are involved in signals emanating from cytokine receptors, antigen receptors, and other lymphoid cell surface receptors. One family member, ITK (inducible T cell kinase), is involved in T cell activation and can be activated by the T cell receptor and the CD28 cell surface receptor. This stimulation of tyrosine phosphorylation and activation of ITK can be mimicked by the Src family kinase Lck. We have explored the mechanism of this requirement for Src family kinases in the activation of ITK. We found that coexpression of ITK and Src results in increased membrane association, tyrosine phosphorylation and activation of ITK, which could be blocked by inhibitors of the lipid kinase phosphatidylinositol 3-kinase (PI 3-kinase) as well as overexpression of the p85 subunit of PI 3-kinase. Removal of the Pleckstrin homology domain (PH) of ITK resulted in a kinase that could no longer be induced to localize to the membrane or be activated by Src. The PH of ITK was also able to bind inositol phosphates phosphorylated at the D3 position. Membrane targeting of ITK without the PH recovered its ability to be activated by Src. These results suggest that ITK can be activated by a combination of Src and PI 3-kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have found conflicting associations between susceptibility to activation-induced cell death and the cell cycle in T cells. However, most of the studies used potentially toxic pharmacological agents for cell cycle synchronization. A panel of human melanoma tumor-reactive T cell lines, a CD8+ HER-2/neu-reactive T cell clone, and the leukemic T cell line Jurkat were separated by centrifugal elutriation. Fractions enriched for the G0–G1, S, and G2–M phases of the cell cycle were assayed for T cell receptor-mediated activation as measured by intracellular Ca2+ flux, cytolytic recognition of tumor targets, and induction of Fas ligand mRNA. Susceptibility to apoptosis induced by recombinant Fas ligand and activation-induced cell death were also studied. None of the parameters studied was specific to a certain phase of the cell cycle, leading us to conclude that in nontransformed human T cells, both activation and apoptosis through T cell receptor activation can occur in all phases of the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of β-adrenergic receptors (BAR) by clenbuterol (CLE) increases nerve growth factor (NGF) biosynthesis in the rat cerebral cortex but not in other regions of the brain. We have explored the transcription mechanisms that may account for the cortex-specific activation of the NGF gene. Although the NGF promoter contains an AP-1 element, AP-1-binding activity in the cerebral cortex was not induced by CLE, suggesting that other transcription factors govern the brain area-specific induction of NGF. Because BAR activation increases cAMP levels, we examined the role of CCAAT/enhancer-binding proteins (C/EBP), some of which are known to be cAMP-inducible. In C6–2B glioma cells, whose NGF expression is induced by BAR agonists, (i) CLE increased C/EBPδ-binding activity, (ii) NGF mRNA levels were increased by overexpressing C/EBPδ, and (iii) C/EBPδ increased the activity of an NGF promoter–reporter construct. Moreover, DNase footprinting and deletion analyses identified a C/EBPδ site in the proximal region of the NGF promoter. C/EBPδ appears to be responsible for the BAR-mediated activation of the NGF gene in vivo, since CLE elicited a time-dependent increase in C/EBPδ-binding activity in the cerebral cortex only. Our data suggest that, while AP-1 may regulate basal levels of NGF expression, C/EBPδ is a critical component determining the area-specific expression of NGF in response to BAR stimulation.