908 resultados para INCA Feature
Resumo:
Tässä työssä testattiin partikkelikokojakaumien analysoinnissa käytettävää kuvankäsittelyohjelmaa INCA Feature. Partikkelikokojakaumat määritettiin elektronimikroskooppikuvista INCA Feature ohjelmaa käyttäen partikkeleiden projektiokuvista päällystyspigmenttinä käytettävälle talkille ja kahdelle eri karbonaattilaadulle. Lisäksi määritettiin partikkelikokojakaumat suodatuksessa ja puhdistuksessa apuaineina käytettäville piidioksidi- ja alumiinioksidihiukkasille. Kuvankäsittelyohjelmalla määritettyjä partikkelikokojakaumia verrattiin partikkelin laskeutumisnopeuteen eli sedimentaatioon perustuvalla SediGraph 5100 analysaattorilla ja laserdiffraktioon perustuvalla Coulter LS 230 menetelmällä analysoituihin partikkelikokojakaumiin. SediGraph 5100 ja kuva-analyysiohjelma antoivat talkkipartikkelien kokojakaumalle hyvin samankaltaisen keskiarvon. Sen sijaan Coulter LS 230 laitteen antama kokojakauman keskiarvo poikkesi edellisistä. Kaikki vertailussa olleet partikkelikokojakaumamenetelmät asettivat eri näytteiden partikkelit samaan kokojärjestykseen. Kuitenkaan menetelmien tuloksia ei voida numeerisesti verrata toisiinsa, sillä kaikissa käytetyissä analyysimenetelmissä partikkelikoon mittaus perustuu partikkelin eri ominaisuuteen. Työn perusteella kaikki testatut analyysimenetelmät soveltuvat paperipigmenttien partikkelikokojakaumien määrittämiseen. Tässä työssä selvitettiin myös kuva-analyysiin tarvittava partikkelien lukumäärä, jolla analyysitulos on luotettava. Työssä todettiin, että analysoitavien partikkelien lukumäärän tulee olla vähintään 300 partikkelia. Liian suuri näytemäärä lisää kokojakauman hajontaa ja pidentää analyysiin käytettyä aikaa useaan tuntiin. Näytteenkäsittely vaatii vielä lisää tutkimuksia, sillä se on tärkein ja kriittisin vaihe SEM ja kuva-analyysiohjelmalla tehtävää partikkelikokoanalyysiä. Automaattisten mikroskooppien yleistyminen helpottaa ja nopeuttaa analyysien tekoa, jolloin menetelmän suosio tulee kasvamaan myös paperipigmenttien tutkimuksessa. Laitteiden korkea hinta ja käyttäjältä vaadittava eritysosaaminen tulevat rajaamaan käytön ainakin toistaiseksi tutkimuslaitoksiin.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Background: Feature selection is a pattern recognition approach to choose important variables according to some criteria in order to distinguish or explain certain phenomena (i.e., for dimensionality reduction). There are many genomic and proteomic applications that rely on feature selection to answer questions such as selecting signature genes which are informative about some biological state, e. g., normal tissues and several types of cancer; or inferring a prediction network among elements such as genes, proteins and external stimuli. In these applications, a recurrent problem is the lack of samples to perform an adequate estimate of the joint probabilities between element states. A myriad of feature selection algorithms and criterion functions have been proposed, although it is difficult to point the best solution for each application. Results: The intent of this work is to provide an open-source multiplataform graphical environment for bioinformatics problems, which supports many feature selection algorithms, criterion functions and graphic visualization tools such as scatterplots, parallel coordinates and graphs. A feature selection approach for growing genetic networks from seed genes ( targets or predictors) is also implemented in the system. Conclusion: The proposed feature selection environment allows data analysis using several algorithms, criterion functions and graphic visualization tools. Our experiments have shown the software effectiveness in two distinct types of biological problems. Besides, the environment can be used in different pattern recognition applications, although the main concern regards bioinformatics tasks.
Resumo:
A large number of ore deposits that formed in the Peruvian Andes during the Miocene (15-5 Ma) are related to the subduction of the Nazea plate beneath the South American plate. Here we show that the spatial and temporal distribution of these deposits correspond with the arrival of relatively buoyant topographic anomalies, namely the Nazca Ridge in central Peru and the now-consumed Inca Plateau in northern Peru, at the subduction zone. Plate reconstruction shows a rapid metallogenic response to the arrival of the topographic anomalies at the subduction trench. This is indicated by clusters of ore deposits situated within the proximity of the laterally migrating zones of ridge subduction. It is accordingly suggested that tectonic changes associated with impingement of the aseismic ridge into the subduction zone may trigger the formation of ore deposits in metallogenically fertile suprasubduction environments. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Morbid obesity is highly prevalent in the Western World, and its consequences present a real public health challenge. Voice alterations can represent one of these consequences and represent an opportunity for interference with therapeutic methods. This particularly features of the individual`s voice was the goal of the present study. A group of 45 adult volunteers of both sexes with a BMI greater than 35 Kg/m(2) was selected among patients of the Obesity Ambulatory of the Digestive Surgery Division. The control group consisted of volunteers matched by sex, age (+/- 1 year), and smoking habits, but with a BMI bellow 30 Kg/m(2). All subjects were submitted to laryngoscopic examination, audio perceptive analysis, and voice acoustics determination. Examinations were always performed by the same doctor, and diagnoses were provided by two different physician specialists in laryngology and voice. Obese individuals exhibit the following modifications in voice feature: hoarseness, murmuring, vocal instability, altered jitter and shimmer, and reduced maximum phonation times as well the presence of voice strangulation at the end of emission. The voices of individuals with morbid obesity are different of the voice of nonobese people and demonstrate significant changes in vocal characteristics.
Resumo:
Aims: Claudins, a large family of essential tight junction (TJ) proteins, are abnormally regulated in human carcinomas, especially claudin-7. The aim of this study was to investigate claudin-7 expression and alterations in oral squamous cell carcinoma (OSCC). Methods and results: Expression of claudin-7 was analysed in 132 cases of OSCC organized in a tissue microarray. Claudin-7 mRNA transcript was evaluated using real-time polymerase chain reaction and the methylation status of the promoter was also assessed. Claudin-7 was negative in 58.3% of the cases. Loss of claudin-7 protein expression was associated with recurrence (P = 0.019), tumour size (P = 0.014), clinical stage of OSCC (P = 0.055) and disease-free survival (P = 0.015). Down-regulation of the claudin-7 mRNA transcripts was observed in 78% of the cases, in accordance with immunoexpression. Analysis of the methylation status of the promoter region of claudin-7 revealed that treatment of O28 cells (that did not express claudin-7 mRNA transcripts) with 5-Aza-2`-Deoxycytidine (5-Aza-dC) led to the re-expression of claudin-7 mRNA transcript. Conclusion: Loss of claudin-7 expression is associated with important subcellular processes in OSCC with impact on clinical parameters.
Resumo:
Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.
Resumo:
Para garantir a seguran??a no tratamento dos pacientes e aos profissionais de sa??de, foi criado o ???Sistema especial para pr??-qualifica????o de marcas e produtos??? para participa????o em licita????es de materiais hospitalares no Inca, devido ?? peculiaridade do paciente oncol??gico
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
A literatura atribui à descentralização da estrutura organizacional efeitos positivos sobre a orientação empreendedora e o desempenho da firma; existem também evidências de efeito positivo da centralização dos procedimentos complexos em hospitais de grande porte sobre os resultados do tratamento do câncer. O objetivo deste estudo é avaliar os efeitos da centralização dos laboratórios de anatomia patológica do Instituto Nacional do Câncer (INCA) brasileiro, em 2002, sobre o desempenho da atividade de diagnóstico e controle do câncer. A análise é desenvolvida com o cálculo de uma fronteira eficiente não paramétrica de produção no período 1997-2007, por meio da Análise Envoltória de Dados (DEA). O resultado é que a centralização reverteu a queda de eficiência técnica dos laboratórios no período 1997-2001. A conclusão do artigo é que o Modelo DEA traz um aporte ao conhecimento sobre a mudança de estrutura organizacional nas organizações públicas de saúde e uma contribuição gerencial sobre a eficácia da centralização para melhorar o suporte laboratorial da patologia aos hospitais do INCA.
Resumo:
In music genre classification, most approaches rely on statistical characteristics of low-level features computed on short audio frames. In these methods, it is implicitly considered that frames carry equally relevant information loads and that either individual frames, or distributions thereof, somehow capture the specificities of each genre. In this paper we study the representation space defined by short-term audio features with respect to class boundaries, and compare different processing techniques to partition this space. These partitions are evaluated in terms of accuracy on two genre classification tasks, with several types of classifiers. Experiments show that a randomized and unsupervised partition of the space, used in conjunction with a Markov Model classifier lead to accuracies comparable to the state of the art. We also show that unsupervised partitions of the space tend to create less hubs.
Resumo:
PURPOSE: Fatty liver disease (FLD) is an increasing prevalent disease that can be reversed if detected early. Ultrasound is the safest and ubiquitous method for identifying FLD. Since expert sonographers are required to accurately interpret the liver ultrasound images, lack of the same will result in interobserver variability. For more objective interpretation, high accuracy, and quick second opinions, computer aided diagnostic (CAD) techniques may be exploited. The purpose of this work is to develop one such CAD technique for accurate classification of normal livers and abnormal livers affected by FLD. METHODS: In this paper, the authors present a CAD technique (called Symtosis) that uses a novel combination of significant features based on the texture, wavelet transform, and higher order spectra of the liver ultrasound images in various supervised learning-based classifiers in order to determine parameters that classify normal and FLD-affected abnormal livers. RESULTS: On evaluating the proposed technique on a database of 58 abnormal and 42 normal liver ultrasound images, the authors were able to achieve a high classification accuracy of 93.3% using the decision tree classifier. CONCLUSIONS: This high accuracy added to the completely automated classification procedure makes the authors' proposed technique highly suitable for clinical deployment and usage.