1000 resultados para IMMUNOSTIMULATORY DNA
Resumo:
The expression of tlr4, md2 and cd14 was studied in equine blood leukocytes and in intestinal samples using real time PCR. The stability of three commonly used reference genes, glyceraldehyde-3P-dehydrogenase (GAPDH), hypoxantine ribosyltransferase (HPRT) and succinate dehydrogenase complex subunit A (SDHA), was evaluated using qbase(PLUS). The equine peripheral blood mononuclear cells (eqPBMC) examined were either stimulated in vitro with Phorbol 12-myristate 13-acetate (PMA) and ionomycin or with the CpG oligodeoxynuclotide 2216 (CpG-ODN 2216) or obtained from horses before, during and after infusion of endotoxin. Intestinal tissue from healthy horses was sampled at ileum, right dorsal colon and rectum. Ranking of the three reference genes used for normalisation identified the combination HPRT/SDHA as most suitable both when determined ex vivo in leukocytes obtained from experimentally induced endotoxaemia and in eqPBMC activated in vitro while HPRT/GAPDH were most appropriate for the intestinal samples. The relative amounts of mRNA for TLR4 and MD-2 increased threefold during in vitro activation of the cells with CpG-ODN 2216 but was decreased in cultures stimulated with PMA/ionomycin. A transient elevation in the transcription of tlr4 and md2 was also evident for equine blood leukocytes following endotoxaemia. The levels of mRNA for CD14 on the other hard remained unaffected both during the induction of endotoxaemia and in the in vitro stimulated PBMCs. A low steady expression of TLR4, MD-2 and CD14 mRNA was demonstrated for the intestinal samples with no variation between the intestinal segments analysed. Thus, the foundation for real time PCR based levels of analysis of mRNA for all three components in the equine LPS receptor complex in different intestinal segments was set, making it possible to carry out future expression studies on clinical material. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The cationic lipid dioctadecyldimethylammonium bromide (DODAB) and the CpG oligonucleotide (CpG) have been separately used as potent immunoadjuvants driving Th1 responses. Here DODAB bilayer fragments (BF) and CpG (5 -TTGACGTTCG-3) assemblies have their physical properties and immunoadjuvant activity determined using ovalbumin (OVA) as a model antigen. At 0.1 mg/mL OVA, the dependence of DODAB BF/OVA size and zeta-potential on time and [DODAB] establishes 0.1 mMDODAB as suitable for obtaining stable and cationic DODAB BF/OVA assemblies. At 0.1 mMDODAB, 0.1 mg/mL OVA and 0.006 mMCpG, the zeta-potential is zero. At [CpG]>0.006 mM, good colloidal stability for the anionic assemblies is due to charge overcompensation. At 0.020 mM CpG, these DODAB BF/OVA/CpG assemblies are highly effective in vivo generating responses similar to those elicited by the stable and cationic DODAB BF/OVA. The anti-OVA DTH reaction and the secretion of IFN-gamma and IL-12 are 6, 42 and 9 times larger for the DODAB BF/OVA/CpG-immunized mice than the same responses by OVA-immunized mice, respectively. This work shows for the first time that charge of small assemblies is not important to determine the immune response. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Orally administered live Lactobacillus acidophilus was assessed for its capacity to enhance clearance from the oral cavity of DBA/2 mice shown previously to be 'infection prone'. L. acidophilus fed to DBA/2 mice significantly shortened the duration of colonization of the oral cavity compared to controls. Enhanced clearance of Candida albicans correlated with both early mRNA gene expression for interleukin (IL)-4 and interferon (IFN)-gamma and expression of their secreted products in cultures of cervical lymph nodes stimulated with Candida antigen. In addition rapid clearance correlated with higher levels of IFN-gamma and nitric oxide in saliva. Delayed clearance, less pronounced levels of the cytokine response, saliva IFN-gamma and nitric oxide, and later mRNA expression for IL-4 and IFN-gamma relative to feeding with the L. acidophilus isolate were noted in mice fed a different Lactobacillus isolate (L. fermentum). These observations indicate significant variations in individual isolates to activate the common mucosal system.
Resumo:
Macrophages and B cells are activated by unmethylated CpG-containing sequences in bacterial DNA. The lack of activity of self DNA has generally been attributed to CpG suppression and methylation, although the role of methylation is in doubt. The frequency of CpG in the mouse genome is 12.5% of Escherichia coli, with unmethylated CpG occurring at similar to3% the frequency of E. coli. This suppression of CpG alone is insufficient to explain the inactivity of self DNA; vertebrate DNA was inactive at 100 mug/ml, 3000 times the concentration at which E. coli DNA activity was observed. We sought to resolve why self DNA does not activate macrophages. Known active CpG motifs occurred in the mouse genome at 18% of random occurrence, similar to general CpG suppression. To examine the contribution of methylation, genomic DNAs were PCR amplified. Removal of methylation from the mouse genome revealed activity that was 23-fold lower than E. coli DNA, although there is only a 7-fold lower frequency of known active CpG motifs in the mouse genome. This discrepancy may be explained by G-rich sequences such as GGAGGGG, which potently inhibited activation and are found in greater frequency in the mouse than the E. coli genome. In summary, general CpG suppression, CpG methylation, inhibitory motifs, and saturable DNA uptake combined to explain the inactivity of self DNA. The immunostimulatory activity of DNA is determined by the frequency of unmethylated stimulatory sequences within an individual DNA strand and the ratio of stimulatory to inhibitory sequences.
Resumo:
During bacterial infections, the balance between resolution of infection and development of sepsis is dependent upon the macrophage response to bacterial products. We show that priming of murine bone marrow-derived macrophages (BMMs) with CSF-1 differentially regulates the response to two such stimuli, LPS and immunostimulatory (CpG) DNA. CSF-1 pretreatment enhanced IL-6, IL-12, and TNF-alpha production in response to LPS but suppressed the same response to CpG DNA. CSF-1 also regulated cytokine gene expression in response to CpG DNA and LPS; CpG DNA-induced IL-12 p40, IL-12 p35, and TNF-alpha mRNAs were all suppressed by CSF-1 pretreatment. CSF-1 pretreatment enhanced LPS-induced IL-12 p40 mRNA but not TNF-alpha and IL-12 p35 mRNAs, suggesting that part of the priming effect is posttranscriptional. CSF-1 pretreatment also suppressed CpG DNA-induced nuclear translocation of NF-kappaB and phosphorylation of the mitogen-activated protein kinases p38 and extracellular signal-related kinases-1/2 in BMMs, indicating that early events in CpG DNA signaling were regulated by CSF-1. Expression of Toll-like receptor (TLR)9, which is necessary for responses to CpG DNA, was markedly suppressed by CSF-1 in both BMMs and thioglycolate-elicited peritoneal macrophages. CSF-1 also down-regulated expression of TLR1, TLR2, and TLR6, but not the LPS receptor, TLR4, or TLR5. Hence, CSF-1 may regulate host responses to pathogens through modulation of TLR expression. Furthermore, these results suggest that CSF-1 and CSF-1R antagonists may enhance the efficacy of CpG DNA in vivo.
Resumo:
Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP) as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA). The formulations included (1) trimethyl chitosan (TMC) nanoparticles, (2) a squalene-in-water nanoemulsion, and (3) a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9). In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2) was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.
Resumo:
DNA-based immunization has initiated a new era of vaccine research. One of the main goals of gene vaccine development is the control of the levels of expression in vivo for efficient immunization. Modifying the vector to modulate expression or immunogenicity is of critical importance for the improvement of DNA vaccines. The most frequently used vectors for genetic immunization are plasmids. In this article, we review some of the main elements relevant to their design such as strong promoter/enhancer region, introns, genes encoding antigens of interest from the pathogen (how to choose and modify them), polyadenylation termination sequence, origin of replication for plasmid production in Escherichia coli, antibiotic resistance gene as selectable marker, convenient cloning sites, and the presence of immunostimulatory sequences (ISS) that can be added to the plasmid to enhance adjuvanticity and to activate the immune system. In this review, the specific modifications that can increase overall expression as well as the potential of DNA-based vaccination are also discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.
Resumo:
Intramuscular injection of naked plasmid DNA is known (1-3) to elicit humoral and cell-mediated immune responses against the encoded antigen. It is thought (2,3) that immunity follows DNA uptake by muscle cells, leading to the expression and extracellular release of the antigen which is then taken up by antigen presenting cells (APC). In addition, it is feasible that some of the injected DNA is taken up directly by APC. Disadvantages (1-3) of naked DNA vaccination include: uptake of DNA by only a minor fraction of muscle cells, exposure of DNA to deoxyribonuclease in the interstitial fluid thus necessitating the use of relatively large quantities of DNA, and, in some cases, injection into regenerating muscle in order to enhance immunity. We have recently proposed (1,4) that DNA immunization via liposomes (phospholipid vesicles) could circumvent the need of muscle involvement and instead facilitate (5) uptake of DNA by APC infiltrating the site of injection or in the lymphatics, at the same time protecting DNA from nuclease attack (6). Moreover, transfection of APC with liposomal DNA could be promoted by the judicial choice of vesicle surface charge, size and lipid composition, or by the co-entrapment, together with DNA, of plasmids expressing appropriate cytokines (e.g., interleukin 2), or immunostimulatory sequences.
Resumo:
Cationic liposomes have been extensively explored for their efficacy in delivering nucleic acids, by offering the ability to protect plasmid DNA against degradation, promote gene expression and, in the case of DNA vaccines, induce both humoural and cellular immune responses. DNA vaccines may also offer advantages in terms of safety, but they are less effective and need an adjuvant to enhance their immunogenicity. Therefore, cationic liposomes can be utilised as delivery systems and/or adjuvants for DNA vaccines to stimulate stronger immune responses. To explore the role of liposomal systems within plasmid DNA delivery, parameters such as the effect of lipid composition, method of liposome preparation and presence of electrolytes in the formulation were investigated in characterisation studies, in vitro transfection studies and in vivo biodistribution and immunisation studies. Liposomes composed of 1,2-dioleoyl-sn-glycero 3-phosphoethanolamine (DOPE) in combination with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-stearoyl-3- trimethylammonium-propane (DSTAP) were prepared by the lipid hydration method and hydrated in aqueous media with or without presence of electrolytes. Whilst the in vitro transfection efficiency of all liposomes resulted to be higher than Lipofectin, DSTAP-based liposomes showed significantly higher transfection efficiency than DOTAP-based formulations. Furthermore, upon intramuscular injection of liposomal DNA vaccines, DSTAP-based liposomes showed a significantly stronger depot effect at the injection site. This could explain the result of heterologous immunisation studies, which revealed DSTAP-based liposomal vaccines induce stronger immune responses compared to DOTAP-based formulations. Previous studies have shown that having more liposomally associated antigen at the injection site would lead to more drainage of them into the local lymph nodes. Consequently, this would lead to more antigens being presented to antigen presenting cells, which are circulating in lymph nodes, and this would initiate a stronger immune response. Finally, in a comparative study, liposomes composed of dimethyldioctadecylammonium bromide (DDA) in combination with DOPE or immunostimulatory molecule of trehalose 6,6-dibehenate (TDB) were prepared and investigated in vitro and in vivo. Results showed that although DDA:TDB is not able to transfect the cells efficiently in vitro, this formulation induces stronger immunity compared to DDA:DOPE due to the immunostimulatory effects of TDB. This study demonstrated, while the presence of electrolytes did not improve immune responses, small unilamellar vesicle (SUV) liposomes induced stronger humoural immune responses compared to dehydration rehydration vesicle (DRV) liposomes. Moreover, lipid composition was shown to play a key role in in vitro and in vivo behaviour of the formulations, as saturated cationic lipids provided stronger immune responses compared to unsaturated lipids. Finally, heterologous prime/boost immunisation promoted significantly stronger immune responses compared to homologous vaccination of DNA vaccines, however, a single immunisation of subunit vaccine provoked comparable levels of immune response to the heterologous regimen, suggesting more immune efficiency for subunit vaccines compared to DNA vaccines.
Resumo:
To detect the presence of male DNA in vaginal samples collected from survivors of sexual violence and stored on filter paper. A pilot study was conducted to evaluate 10 vaginal samples spotted on sterile filter paper: 6 collected at random in April 2009 and 4 in October 2010. Time between sexual assault and sample collection was 4-48hours. After drying at room temperature, the samples were placed in a sterile envelope and stored for 2-3years until processing. DNA extraction was confirmed by polymerase chain reaction for human β-globin, and the presence of prostate-specific antigen (PSA) was quantified. The presence of the Y chromosome was detected using primers for sequences in the TSPY (Y7/Y8 and DYS14) and SRY genes. β-Globin was detected in all 10 samples, while 2 samples were positive for PSA. Half of the samples amplified the Y7/Y8 and DYS14 sequences of the TSPY gene and 30% amplified the SRY gene sequence of the Y chromosome. Four male samples and 1 female sample served as controls. Filter-paper spots stored for periods of up to 3years proved adequate for preserving genetic material from vaginal samples collected following sexual violence.
Resumo:
The Fourier transform-infrared (FT-IR) signature of dry samples of DNA and DNA-polypeptide complexes, as studied by IR microspectroscopy using a diamond attenuated total reflection (ATR) objective, has revealed important discriminatory characteristics relative to the PO2(-) vibrational stretchings. However, DNA IR marks that provide information on the sample's richness in hydrogen bonds have not been resolved in the spectral profiles obtained with this objective. Here we investigated the performance of an all reflecting objective (ARO) for analysis of the FT-IR signal of hydrogen bonds in DNA samples differing in base richness types (salmon testis vs calf thymus). The results obtained using the ARO indicate prominent band peaks at the spectral region representative of the vibration of nitrogenous base hydrogen bonds and of NH and NH2 groups. The band areas at this spectral region differ in agreement with the DNA base richness type when using the ARO. A peak assigned to adenine was more evident in the AT-rich salmon DNA using either the ARO or the ATR objective. It is concluded that, for the discrimination of DNA IR hydrogen bond vibrations associated with varying base type proportions, the use of an ARO is recommended.
Resumo:
This study aimed at evaluating whether human papillomavirus (HPV) groups and E6/E7 mRNA of HPV 16, 18, 31, 33, and 45 are prognostic of cervical intraepithelial neoplasia (CIN) 2 outcome in women with a cervical smear showing a low-grade squamous intraepithelial lesion (LSIL). This cohort study included women with biopsy-confirmed CIN 2 who were followed up for 12 months, with cervical smear and colposcopy performed every three months. Women with a negative or low-risk HPV status showed 100% CIN 2 regression. The CIN 2 regression rates at the 12-month follow-up were 69.4% for women with alpha-9 HPV versus 91.7% for other HPV species or HPV-negative status (P < 0.05). For women with HPV 16, the CIN 2 regression rate at the 12-month follow-up was 61.4% versus 89.5% for other HPV types or HPV-negative status (P < 0.05). The CIN 2 regression rate was 68.3% for women who tested positive for HPV E6/E7 mRNA versus 82.0% for the negative results, but this difference was not statistically significant. The expectant management for women with biopsy-confirmed CIN 2 and previous cytological tests showing LSIL exhibited a very high rate of spontaneous regression. HPV 16 is associated with a higher CIN 2 progression rate than other HPV infections. HPV E6/E7 mRNA is not a prognostic marker of the CIN 2 clinical outcome, although this analysis cannot be considered conclusive. Given the small sample size, this study could be considered a pilot for future larger studies on the role of predictive markers of CIN 2 evolution.
Resumo:
Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.