72 resultados para IMIPRAMINE
Resumo:
A growing body of evidence has suggested that reactive oxygen species (ROS) may play an important role in the physiopathology of depression. Evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of depression. The present study we evaluated the effects of acute and chronic administration of harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) or saline in lipid and protein oxidation levels and superoxide dismutase (SOD) and catalase (CAT) activities in rat prefrontal cortex and hippocampus. Acute and chronic treatments with imipramine and harmine reduced lipid and protein oxidation, compared to control group in prefrontal cortex and hippocampus. The SOD and CAT activities increased with acute and chronic treatments with imipramine and harmine, compared to control group in prefrontal cortex and hippocampus. In conclusion, our results indicate positive effects of imipramine antidepressant and beta-carboline harmine of oxidative stress parameters, increasing SOD and CAT activities and decreasing lipid and protein oxidation.
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
This study was aimed to determine whether imipramine chronic treatment promotes neurogenesis in the dentate gyrus (DG) and interferes with neuronal death in the CA1 subfield of the hippocampus after transient global cerebral ischemia (TGCI) in rats. After TGCI, animals were treated with imipramine (20 mg/kg, i.p.) or saline during 14 days. 5-Bromo-2`-deoxyuridine-5`-monophosphate (BrdU) was injected 24 h after the last imipramine or saline injection to label proliferating cells. In order to confirm the effect of TGCI on neuronal death and cell proliferation, a group of animals was sacrificed 7 days after TGCI. Neurogenesis and neurodegeneration were evaluated by doublecortin (DCX)-immunohistochemistry and Fluoro-Jade C (FJC)- staining, respectively. The rate of cell proliferation increases 7 days but returns to basal levels 14 days after TGCI. There was a significant increase in the number of FJC-positive neurons in the CA1 of animals 7 and 14 days after TGCI. Chronic imipramine treatment increased cell proliferation in the SGZ of DG and reduced the neurodegeneration in the CA] of the hippocampus 14 days after TGCI. Immunohistochemistry for DCX detected an increased number of newly generated neurons in the hippocampal DG 14 days after TGCI, which was not affected by imipramine treatment. Further studies are needed to evaluate whether imipramine treatment for longer time would be able to promote survival of newly generated neurons as well as to improve functional recovery after TGCI. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cholinergic as well as monoaminergic neurotransmission seems to be involved in the etiology of affective disorders. Chronic treatment with imipramine, a classical antidepressant drug, induces adaptive changes in monoaminergic neurotransmission. In order to identify possible changes in cholinergic neurotransmission we measured total, membrane-bound and soluble acetylcholinesterase (Achase) activity in several rat brain regions after chronic imipramine treatment. Changes in Achase activity would indicate alterations in acetylcholine (Ach) availability to bind to its receptors in the synaptic cleft. Male rats were treated with imipramine (20 mg/kg, ip) for 21 days, once a day. Twenty-four hours after the last dose the rats were sacrificed and homogenates from several brain regions were prepared. Membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) after chronic imipramine treatment was significantly decreased in the hippocampus (control = 188.8 ± 19.4, imipramine = 154.4 ± 7.5, P<0.005) and striatum (control = 850.9 ± 59.6, imipramine = 742.5 ± 34.7, P<0.005). A small increase in total Achase activity was observed in the medulla oblongata and pons. No changes in enzyme activity were detected in the thalamus or total cerebral cortex. Since the levels of Achase seem to be enhanced through the interaction between Ach and its receptors, a decrease in Achase activity may indicate decreased Ach release by the nerve endings. Therefore, our data indicate that cholinergic neurotransmission is decreased after chronic imipramine treatment which is consistent with the idea of an interaction between monoaminergic and cholinergic neurotransmission in the antidepressant effect of imipramine
Resumo:
The effects of in vivo chronic treatment and in vitro addition of imipramine, a tricyclic antidepressant, or fluoxetine, a selective serotonin reuptake inhibitor, on the cortical membrane-bound Na+,K+-ATPase activity were studied. Adult Wistar rats received daily intraperitoneal injections of 10 mg/kg of imipramine or fluoxetine for 14 days. Twelve hours after the last injection rats were decapitated and synaptic plasma membranes (SPM) from cerebral cortex were prepared to determine Na+,K+-ATPase activity. There was a significant decrease (10%) in enzyme activity after imipramine but fluoxetine treatment caused a significant increase (27%) in Na+,K+-ATPase activity compared to control (P<0.05, ANOVA; N = 7 for each group). When assayed in vitro, the addition of both drugs to SPM of naive rats caused a dose-dependent decrease in enzyme activity, with the maximal inhibition (60-80%) occurring at 0.5 mM. We suggest that a) imipramine might decrease Na+,K+-ATPase activity by altering membrane fluidity, as previously proposed, and b) stimulation of this enzyme might contribute to the therapeutic efficacy of fluoxetine, since brain Na+,K+-ATPase activity is decreased in bipolar patients.
Resumo:
It is known that chronic high levels of corticosterone (CORT) enhance aversive responses such as avoidance and contextual freezing. In contrast, chronic CORT does not alter defensive behavior induced by the exposure to a predator odor. Since different defense-related responses have been associated with specific anxiety disorders found in clinical settings, the observation that chronic CORT alters some defensive behaviors but not others might be relevant to the understanding of the neurobiology of anxiety. In the present study, we investigated the effects of chronic CORT administration (through surgical implantation of a 21-day release 200 mg pellet) on avoidance acquisition and escape expression by male Wistar rats (200 g in weight at the beginning of the experiments, N = 6-10/group) tested in the elevated T-maze (ETM). These defensive behaviors have been associated with generalized anxiety and panic disorder, respectively. Since the tricyclic antidepressant imipramine is successfully used to treat both conditions, the effects of combined treatment with chronic imipramine (15 mg, ip) and CORT were also investigated. Results showed that chronic CORT facilitated avoidance performance, an anxiogenic-like effect (P < 0.05), without changing escape responses. Imipramine significantly reversed the anxiogenic effect of CORT (P < 0.05), although the drug did not exhibit anxiolytic effects by itself. Confirming previous observations, imipramine inhibited escape responses, a panicolytic-like effect. Unlike chronic CORT, imipramine also decreased locomotor activity in an open field. These data suggest that chronic CORT specifically altered ETM avoidance, a fact that should be relevant to a better understanding of the physiopathology of generalized anxiety and panic disorder.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Based on previous studies in vitro of the modulating effect of desipramine on chloroquine-resistance of Plasmodium falciparum, the effect of desipramine and imipramine on freshly isolated resistant Brazilian strains of the parasite was investigated. Both drugs in therapeutic doses showed an unexpected antimalarial effect in vitro in duplicate tests (IC50=44.26 and 46.53 mu g/L for desipramine, and 83.93 and 41.26 mu g/L for imipramine), but no reversal of resistance when added to cultures together with chloroquine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT(2C)Rs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT(2C)Rs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT(2C)Rs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT(2C)Rs accounts for the short-term aversive effect of antidepressants.
Resumo:
This study with 31 obese binge eaters (body mass index [BMI] 39.5+/-8.6 kg/m(2) [SD]) was designed to assess whether diet counseling with psychological support and imipramine or placebo has an effect on the frequency of binge eating, body weight, and depression during an 8-week treatment phase. This was followed by an open medication-free phase of 6 months of continuous diet counseling with psychological support.
Resumo:
Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^