985 resultados para II RECEPTORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inappropriate activation of the renin-angiotensin system (RAS) contributes to many CKDs. However, the role of the RAS in modulating AKI requires elucidation, particularly because stimulating type 1 angiotensin II (AT1) receptors in the kidney or circulating inflammatory cells can have opposing effects on the generation of inflammatory mediators that underpin the pathogenesis of AKI. For example, TNF-α is a fundamental driver of cisplatin nephrotoxicity, and generation of TNF-α is suppressed or enhanced by AT1 receptor signaling in T lymphocytes or the distal nephron, respectively. In this study, cell tracking experiments with CD4-Cre mT/mG reporter mice revealed robust infiltration of T lymphocytes into the kidney after cisplatin injection. Notably, knockout of AT1 receptors on T lymphocytes exacerbated the severity of cisplatin-induced AKI and enhanced the cisplatin-induced increase in TNF-α levels locally within the kidney and in the systemic circulation. In contrast, knockout of AT1 receptors on kidney epithelial cells ameliorated the severity of AKI and suppressed local and systemic TNF-α production induced by cisplatin. Finally, disrupting TNF-α production specifically within the renal tubular epithelium attenuated the AKI and the increase in circulating TNF-α levels induced by cisplatin. These results illustrate discrepant tissue-specific effects of RAS stimulation on cisplatin nephrotoxicity and raise the concern that inflammatory mediators produced by renal parenchymal cells may influence the function of remote organs by altering systemic cytokine levels. Our findings suggest selective inhibition of AT1 receptors within the nephron as a promising intervention for protecting patients from cisplatin-induced nephrotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ovarian follicle development is primarily regulated by an interplay between the pituitary gonadotrophins, LH and FSH, and ovary-derived steroids. Increasing evidence implicates regulatory roles of transforming growth factor-beta (TGF beta) superfamily members, including inhibins and activins. The aim of this study was to identify the expression of mRNAs encoding key receptors of the inhibin/activin system in ovarian follicles ranging from 4 mm in diameter to the dominant F1 follicle (similar to 40 turn). Ovaries were collected (n=16) from inid-sequence hens maintained on a long-day photoschedule (16h of light:8 h of darkness). All follicles removed were dissected into individual granulosa and thecal layers. RNA was extracted and cDNA synthesized. Real-time quantitative PCR was used to quantify the expression of niRNA encoding betaglycan, activin receptor (ActR) subtypes (type-I, -IIA and -IIB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); receptor expression data were normalized to GAPDH expression. Detectable levels of ActRI, -IIA and -IIB and the inhibin co-receptor (betaglycan) expression were found in all granulosa and thecal layers analysed. Granulosa ActRI mRNA peaked (P < 0(.)05) in 8-9(.)9 mm follicles, whereas ActRIIA rose significantly from 6-7(.)9 mm to 8-9(.)9 nun, before filling to F3/2; levels then rose sharply (3-fold) to F1 levels. Granulosa betaglycan niRNA expression rose 3-fold from 4-5(.)9 min to 8-9(.)9 mm, before falling 4-fold to F3/2; levels then rose sharply (4-fold) to F1 levels. ActRIIB levels did not vary significantly during follicular development. Thecal ActRI mRNA expression was similar from 4-7(.)9 mm then decreased significantly to a nadir at the F4 position, before increasing 2-fold to the F1 (P < 0(.)05). Although thecal ActRIIB and -IIA expression did not vary significantly from 4 nim to F3, ActRIIB expression increased significantly (2-fold) from F3 to F1 and ActIIA, increased 22-fold from F2 to F1 (P < 0(.)05). Thecal betaglycan fell to a nadir at F6 after follicle selection; levels then increased significantly to F2, before filling similar to 50% in the F I. In all follicles studied expression of betaglycan and ActRI (granulosa: 1-0(.)65, P < 0-001, n=144/group; theca: r=0(.)49, P < 0-001, n=144/group) was well correlated. No significant correlations were identified between betaglycan and ActRIIA or -IIB. Considering all follicles analysed, granulosa mRNA expression of betaglycan, ActRI ActRIIA and ActRIIB were all significantly lower than in corresponding thecal tissue (betaglycan, 11(.)4-fold; ActRIIB, 5(.)1-fold; ActR(.) 3-8-fold: ActRIIA, 2(.)8-fold). The co-localization of type-I and -II activin receptors and betaglycan on granulosa and thecal cells are consistent with a local auto/paracrine role of inhibins and activins in modulating ovarian follicle development, selection and progression in the domestic fowl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We speculated that the influence of lateral preoptic area (LPO) in sodium balance, involves arginine(8)-vasopressin (AVP) and angiotensin (ANG II) on Na+ uptake in LPO. Therefore, the present study investigated the effects of central administration of specific AVP and ANG 11 antagonists (d(CH2)(5)-Tyr (Me)-AVP (AAVP) and [Adamanteanacetyl(1), 0-ET-D-Tyr(2), Val(4), Aminobutyryl(6), Arg(8.9)]-AVP (ATAVP) antagonists of V-1 and V-2 receptors of AVP. Also the effects of losartan and CGP42112A (selective ligands of the AT(1) and AT(2) angiotensin receptors, respectively), was investigated on Na+ uptake and renal fluid and electrolyte excretion. After an acclimatization period of 7 days, the animals were maintained under tribromoethanol (200 mg/kg body weight, intraperitonial) anesthesia and placed in a Kopf stereotaxic instrument. Stainless guide cannula was implanted into the LPO. AAVP and ATAVP injected into the LPO prior to AVP produced a reduction in the NaCl intake. Both the AT(1) and AT(2) ligands administered into the LPO elicited a decrease in the NaCl intake induced by AVP injected into the LPO. AVP injection into the LPO increased sodium renal excretion, but this was reduced by prior AAVP administration. The ATAVP produced a decreased in the natriuretic effect of AVP. The losartan injected into LPO previous to AVP decreased the sodium excretion and the CGP 421122A also decreased the natriuretic effect of AVP. The AVP produced an antidiuresis effect that was inhibited by prior administration into LPO of the ATAVP. The AAVP produced no change in the antidiuretic effect of AVP. These results suggest that LPO are implicated in sodium balance that is mediated by V-1, V-2, AT(2) and AT(2) receptors. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Losartan, an AT1 angiotensin II (ANG II) receptor non-peptide antagonist, induces an increase in mean arterial pressure (MAP) when injected intracerebroventricularly (icv) into rats. The present study investigated possible effector mechanisms of the increase in MAP induced by icv losartan in unanesthetized rats. Male Holtzman rats (280-300 g, N = 6/group) with a cannula implanted into the anterior ventral third ventricle received an icv injection of losartan (90 µg/2 µl) that induced a typical peak pressor response within 5 min. In one group of animals, this response to icv losartan was completely reduced from 18 ± 1 to 4 ± 2 mmHg by intravenous (iv) injection of losartan (2.5-10 mg/kg), and in another group, it was partially reduced from 18 ± 3 to 11 ± 2 mmHg by iv prazosin (0.1-1.0 mg/kg), an alpha1-adrenergic antagonist (P<0.05). Captopril (10 mg/kg), a converting enzyme inhibitor, injected iv in a third group inhibited the pressor response to icv losartan from 24 ± 3 to 7 ± 2 mmHg (P<0.05). Propranolol (10 mg/kg), a ß-adrenoceptor antagonist, injected iv in a fourth group did not alter the pressor response to icv losartan. Plasma renin activity and serum angiotensin-converting enzyme activity were not altered by icv losartan in other animals. The results suggest that the pressor effect of icv losartan depends on angiotensinergic and alpha1-adrenoceptor activation, but not on increased circulating ANG II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circumventricular structures of the central nervous system and nitric oxide are involved in arterial blood pressure control, and general anesthesia may stimulate the central renin-angiotensin system. We therefore investigated the central role of angiotensin 11 and nitric oxide on the regulation of systemic arterial blood pressure in conscious and anesthetized rats. METHODS: Rats with stainless steel cannulae implanted into their lateral ventricle were studied. We injected the AT(1) and AT(2) angiotensin 11 receptor antagonists, losartan and PD123319, L-NAME, 7-nitroindazole (nitric oxide synthetase inhibitors), and FK409 (nitric oxide donor agent) into the lateral ventricles. Mean arterial blood pressure (MAP) was recorded in conscious and zoletil-anesthetized rats. RESULTS: Mean +/- (SEM) baseline MAP was 117.5 +/- 2 mm Hg. Angiotensin II injected into the brain lateral ventricle increased MAP from 136.5 +/- 2 min Hg to 138.5 +/- 4 mm Hg (Delta 16 +/- 3 mm Hg to Delta 21 +/- 3 mm Hg) for all experimental groups versus control from 116 +/- 2 mm Hg to 120 +/- 3 mm Hg (Delta 3 +/- 1 mm Hg to A5 +/- 2 mm Hg) (P < 0.05). L-NAME or 7-nitroindazole enhanced the angiotensin II pressor effect (P < 0.05). Prior injection of losartan and PD123319 decreased the angiotensin 11 pressor effect and the enhancement effect of L-NAME and 7-nitroindazole (P < 0.05). Zoletil anesthesia did not interfere with the effects of angiotensin 11, AT,, AT2 antagonists, or nitric oxide synthetase inhibitors. CONCLUSIONS: Endogenous nitric oxide functions tonically as a central inhibitory modulator of the angiotensinergic system. AT, and AT2 receptors influence the angiotensin 11 central control of arterial blood pressure. Zoletil anesthesia did not interfere with these effects. (Anesth Analg 2007;105:1293-7)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Angiotensin (Ang)II is involved in responses to hypovolaemia, such as sodium appetite and increase in blood pressure, Target areas subserving these responses for AngII include the cardiovascular system in the periphery and the circumventricular organs in the brain.2. Conflicting data have been reported for the role of systemic versus brain AngII in the mediation of sodium appetite.3. The role for systemic AngII and systemic AngII receptors in the control of blood pressure in hypovolaemia is well established. In contrast with systemic injections, i.c.v injections of AngII non-peptide AT(1) and AT(2) receptor antagonists, such as losartan and PD123319, do not reduce arterial pressure in sodium-depleted (furosemide injection plus removal of ambient sodium for 24 h) rats. Thus, brain AngII receptors are likely not important for cardiovascular responses to hypovolaemia induced by sodium depletion.4. Intracerebroventricular injections of losartan or PD 123319 increase arterial pressure when injected at relatively high doses. This hypertensive effect is unlikely to be an agonist effect on brain AngII receptors, Increases in arterial pressure produced by i.c.v, losartan are attenuated by lesions of the tissue surrounding the anterior third ventricle (AV3V). The hypertensive effect of i.c.v, AngII is abolished by lesions of the AV3V.5. Hypertension induced by AngII receptor antagonists is consistent with hypotension induced by AngII acting in the brain, However, the full physiological significance of this hypotensive effect mediated by brain AngII receptors remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In bovine adrenal medullary cells synergistically acting type 1 and type 2 angiotensin II (AII) receptors activate the fibroblast growth factor-2 (FGF-2) gene through a unique AII-responsive promoter element. Both the type 1 and type 2 AII receptors and the downstream cyclic adenosine 1′,3′-monophosphate- and protein kinase C-dependent signaling pathways activate the FGF-2 promoter through a novel signal-transducing mechanism. This mechanism, which we have named integrative nuclear FGF receptor-1 signaling, involves the nuclear translocation of FGF receptor-1 and its subsequent transactivation of the AII-responsive element in the FGF-2 promoter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we investigated the effects of the injection into the supraoptic nucleus (SON) of non-peptide AT1- and AT2-angiotensin II (ANG II) receptor antagonists, DuP753 and PD123319, as well as of the arginine-vasopressin (AVP) receptor antagonist d(CH2)5-Tyr(Me)-AVP, on water and 3% NaCl intake induced by the injection of ANG II into the medial septal area (MSA). The effects on water or 3% NaCl intake were assessed in 30-h water-deprived or in 20-h water-deprived furosemide-treated adult male rats, respectively. The drugs were injected in 0.5 µl over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. Antagonists were injected at doses of 20, 80 and 180 nmol. Water and sodium intake was measured over a 2-h period. Previous administration of the AT1 receptor antagonist DuP753 into the SON decreased water (65%, N = 10, P<0.01) and sodium intake (81%, N = 8, P<0.01) induced by the injection of ANG II (10 nmol) into the MSA. Neither of these responses was significantly changed by injection of the AT2-receptor antagonist PD123319 into the SON. on the other hand, while there was a decrease in water intake (45%, N = 9, P<0.01), ANG II-induced sodium intake was significantly increased (70%, N = 8, P<0.01) following injection of the V1-type vasopressin antagonist d(CH2)5-Tyr(Me)-AVP into the SON. These results suggest that both AT1 and V1 receptors within the SON may be involved in water and sodium intake induced by the activation of ANG II receptors within the MSA. Furthermore, they do not support the involvement of MSA AT2 receptors in the mediation of these responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Periodontal Disease affects the supporting structures of the teeth and is initiated by a microbial biofilm called dental plaque. Severity ranges from superficial inflammation of the gingiva (gingivitis) to extensive destruction of connective tissue and bone leading to tooth loss (periodontitis). In periodontitis the destruction of tissue is caused by a cascade of microbial and host factors together with proteolytic enzymes. Matrix metalloproteinases (MMPs) are known to be central mediators of the pathologic destruction in periodontitis. Initially plaque bacteria provide pathogen-associated molecular patterns (PAMPs) which are sensed by Toll-like receptors (TLRs), and initiate intracellular signaling cascades leading to host inflammation. Our aim was to characterize TNF-α (tumor necrosis factor-alpha) and its type I and II receptors in periodontal tissues, as well as, the effects of TNF-α, IL-1β (interleukin-1beta) and IL-17 on the production and/or activation of MMP-3, MMP-8 and MMP-9. Furthermore we mapped the TLRs in periodontal tissues and assessed how some of the PAMPs binding to the key TLRs found in periodontal tissues affect production of TNF-α and IL-1β by gingival epithelial cells with or without combination of IL-17. TNF-α and its receptors were detected in pericoronitis. Furthermore, increased expression of interleukin-1β and vascular cell adhesion molecule-1 was found as a biological indicator of TNF-α ligand-receptor interaction. MMP-3, -8, and 9 were investigated in periodontitis affected human gingival crevicular fluid and gingival fibroblasts produced pro-MMP-3. Following that, the effect of IL-17 was studied on MMP and pro-inflammatory cytokine production. IL-17 was increased in periodontitis and up-regulated IL-1β, TNF-α, MMP-1 and MMP-3. We continued by demonstrating TLRs in gingival tissues, in which significant differences between patients with periodontitis and healthy controls were found. Finally, enzyme-linked immunosorbent assays were performed to show that the gingival cells response to inflammatory responses in a TLR-dependent manner. Briefly, this thesis demonstrates that TLRs are present in periodontal tissues and present differences in periodontitis compared to healthy controls. The cells of gingival tissues respond to inflammatory process in a TLR-dependent manner by producing pro-inflammatory cytokines. During the destruction of periodontal tissues, the release (IL-1β and TNF-α) and co-operation with other pro-inflammatory cytokines (IL-17), which in turn increase the inflammation and thus be more harmful to the host with the increased presence of MMPs (MMP-1, MMP-3, MMP-8, MMP-9) in diseased over healthy sites.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although angiotensin II-induced venoconstriction has been demonstrated in the rat vena cava and femoral vein, the angiotensin II receptor subtypes (AT(1) or AT(2)) that mediate this phenomenon have not been precisely characterized. Therefore, the present study aimed to characterize the pharmacological receptors involved in the angiotensin II-induced constriction of rat venae cavae and femoral veins, as well as the opposing effects exerted by locally produced prostanoids and NO upon induction of these vasomotor responses. The obtained results suggest that both AT(1) and AT(2) angiotensin II receptors are expressed in both veins. Angiotensin II concentration-response curves were shifted toward the right by losartan but not by PD 123319 in both the vena cava and femoral vein. Moreover, it was observed that both 10(-5) M indomethacin and 10(-4) M L-NAME improve the angiotensin II responses in the vena cava and femoral vein. In conclusion, in the rat vena cava and femoral vein, angiotensin II stimulates AT(1) but not AT(2) to induce venoconstriction, which is blunted by vasodilator prostanoids and NO. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated the effects of injection into the supraoptic nucleus (SON) of losartanand PD 123319 (nonpeptide AT(1) and AT(2)- angiotensin II [ANG II] receptor antagonists, respectively); d(CH2)(5)-Tyr(Me)-AVP (AVPA; an arginine-vasopressin [AVP] V-1 receptor antagonist), FK 409 (a nitric oxide [NO] donor), and N-W-mtro-(L)-arginine methyl ester ((L)-NAME; an NO synthase inhibitor) oil water intake, sodium chloride 3% (NaCl) intake and arterial blood pressure induced by injection of ANG 11 into the lateral septal area (LSA). Mate Holtzman rats (250-300 g) were implanted with cannulae into SON and LSA unilaterally. The drugs were injected in 0.5 mul over 30-60 s. Controls were injected with a similar volume of 0.15 M NaCl. ANG II was injected at a dose of 10 pmol. ANG II antagonists and AVPA were injected at doses of 80 nmol. FK 409 and (L)-NAME were injected at doses of 20 and 40 mug, respectively. Water and NaCl intake was measured over a 2-h period. Prior administration of losartan into the SON decreased water and NaCl intake induced by injection of ANG II. While there was a decrease in water intake, ANG II-induced NaCl intake was significantly increased following injection of AVPA. FK 409 injection decreased water intake and sodium intake induced by ANG II. L-NAME alone increased water and sodium intake and induced a pressor effect. (L)-NAME-potentiated water and sodium intake induced by ANG II. PD 123319 produced no changes in water or sodium intake induced by ANG II. The prior administration of losartan or AVPA decreased mean arterial pressure (MAP) induced by ANG II. PD 123319 decreased the pressor effect of ANG II to a lesser degree than losartan. FK 409 decreased the pressor effect of ANG II while (L)-NAME potentiated it. These results suggest that both ANG II AT, and AVP V, receptors and NO within the SON may be involved in water intake, NaCl intake and the pressor response were induced by activation of ANG II receptors within the LSA. These results do not support the involvement of LSA AT(2) receptors in the mediation of water and NaCl intake responses induced by ANG II, but influence the pressor response. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The specific arginine(8)-vasopressin (AVP) V, receptors antagonist (AAVP) was injected (20, 40 and 80 nmol) into the lateral septal area (LSA) to determine the effects of selective septal V, receptor on water and 3% sodium intake in rats. Was also observed the effects of losartan and CGP42112A (select ligands of the AT(1) and AT(2) ANG II receptors, respectively) injected into LSA prior AVP on the same appetites. Twenty-four hours before the experiments, the rats were deprived of water. The volume of drug solution injected was 0.5 mul. Water and sodium intake were measured at 0.25, 0.5, 1.0 and 2,0 h. Injection of AVP reduced the water and sodium ingestion vs. control (0.15 M saline). Pre-treatment with AAVP (40, 80 and 160 nmol) did not alter the decrease in the water ingestion induced by AVP, whereas AAVP abolished the action of AVP-induced sodium intake. Losartan (40, 80 and 160 nmol) did not alter the effect of AVP on water and sodium intake, whereas CGP42112A (20, 40 and 60 nmol) at the first 30 min increased water ingestion. Losartan and CGP42112A together increased the actions of AVP, showing more pronounced effects than when the two antagonists were injected alone. The results showed that AVP inhibited the appetites and these effects were increased by the AAVP. The involvement of angiotensinergic receptors in the effects of AVP is also suggested. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction. Brain arginine(8)-vasopressin (AVP), through the V-1a- and V-2-receptors, is essential for the maintenance of mean arterial pressure (MAP). Central AVP interacts with the components of the renin-angiotensin system, which participate in MAP regulation. This study all to determine the effects of V-1a-, V-2- and V-1a/V-2-AVP selective antagonists and AT(1)- and AT(2)-angiotensin II (Ang II) selective antagonists on the MAP induced by AVP injected into the medial septal area (MSA) of the brain.Materials and methods. Male Holtzman rats with stainless steel cannulae implanted into the MSA were used in experiments. Direct MAP was recorded in Conscious rats.Results. AVP administration into the MSA caused a prompt and potent pressor response in a dose-dependent fashion. Pretreatment with the V-1a- and V-2-antagonists reduced, whereas prior injection of the V-1a/V-2-antagonist induced a decrease in the MAP that remained below the baseline. Both AT(1)- and AT(2)-antagonists elicited a decrease, While simultaneous injections of two antagonists were more effective in decreasing the MAP induced AVP.Conclusion. These results indicate there is a synergism bell the V-1a- and V-2-AVP, and AT(1)- AT, and AT(2)-Ang II receptors in the MSA in the regulation of MAP.