980 resultados para Hydro power


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human use of water resow-ces in Uganda has grown and intensified along with population growth and increasing demand to meet the diverse human needs. In the case of Uganda's rivers, the main uses include fisheries, hydropower generation, abstraction for potable water supply, discharge of sewage and navigation. All these uses can disrupt the integrity of the aquatic ecosystem and may affect the survival of the diversity of organisms. In consideration of the need to increase electricity to meet demand, the Bujagali Hydro-power Project (BHPP) and the National Environment Management Authority (NEMA) recognised the importance of safeguards to mitigate impacts of the project. The National Fisheries Resources Research Institute (NaFIRRI) was assigned the role of providing baseline information on the aquatic ecosystem of the Upper Victoria Nile and to follow up the findings with a monitoring framework during construction and post-commissioning phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. Special emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonlinear model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirements is analysed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The run-of-river hydro power plant usually have low or nil water storage capacity, and therefore an adequate control strategy is required to keep the water level constant in pond. This paper presents a novel technique based on TSK fuzzy controller to maintain the pond head constant. The performance is investigated over a wide range of hill curve of hydro turbine. The results are compared with PI controller as discussed in [1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the dynamic response of a hydro power plant for providing secondary regulation reserve is studied in detail. S pecial emphasis is given to the elastic water column effects both in the penstock and the tailrace tunnel. For this purpose, a nonline ar model based on the analogy between mass and momentum conservation equations of a water conduit and those of wave propagation in transmission lines is used. The influence of the plant configuration and design parameters on the fulfilment of the Spanish Electrical System Operator requirem ents is analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water time constant and mechanical time constant greatly influences the power and speed oscillations of hydro-turbine-generator unit. This paper discusses the turbine power transients in response to different nature and changes in the gate position. The work presented here analyses the characteristics of hydraulic system with an emphasis on changes in the above time constants. The simulation study is based on mathematical first-, second-, third- and fourth-order transfer function models. The study is further extended to identify discrete time-domain models and their characteristic representation without noise and with noise content of 10 & 20 dB signal-to-noise ratio (SNR). The use of self-tuned control approach in minimising the speed deviation under plant parameter changes and disturbances is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four men (unidentified) walking in tunnel wearing hard hats and carrying flashlights.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Appears to be an engineer's drawing of the Hydro Station. It is a cross-section view of the interior.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An extensive electricity transmission network facilitates electricity trading between Finland, Sweden, Norway and Denmark. Currently most of the area's power generation is traded at NordPool, where the trading volumes have steadily increased since the early 1990's, when the exchange was founded. The Nordic electricity is expected to follow the current trend and further integrate with the other European electricity markets. Hydro power is the source for roughly a half of the supply in the Nordic electricity market and most of the hydro is generated in Norway. The dominating role of hydro power distinguishes the Nordic electricity market from most of the other market places. Production of hydro power varies mainly due to hydro reservoirs and demand for electricity. Hydro reservoirs are affected by water inflows that differ each year. The hydro reservoirs explain remarkably the behaviour of the Nordic electricity markets. Therefore among others, Kauppi and Liski (2008) have developed a model that analyzes the behaviour of the markets using hydro reservoirs as explanatory factors. Their model includes, for example, welfare loss due to socially suboptimal hydro reservoir usage, socially optimal electricity price, hydro reservoir storage and thermal reservoir storage; that are referred as outcomes. However, the model does not explain the real market condition but rather an ideal situation. In the model the market is controlled by one agent, i.e. one agent controls all the power generation reserves; it is referred to as a socially optimal strategy. Article by Kauppi and Liski (2008) includes an assumption where an individual agent has a certain fraction of market power, e.g. 20 % or 30 %. In order to maintain the focus of this thesis, this part of their paper is omitted. The goal of this thesis is two-fold. Firstly we expand the results from the socially optimal strategy for years 2006-08, as the earlier study finishes in 2005. The second objective is to improve on the methods from the previous study. This thesis results several outcomes (SPOT-price and welfare loss, etc.) due to socially optimal actions. Welfare loss is interesting as it describes the inefficiency of the market. SPOT-price is an important output for the market participants as it often has an effect on end users' electricity bills. Another function is to modify and try to improve the model by means of using more accurate input data, e.g. by considering pollution trade rights effect on input data. After modifications to the model, new welfare losses are calculated and compared with the same results before the modifications. The hydro reservoir has the higher explanatory significance in the model followed by thermal power. In Nordic markets, thermal power reserves are mostly nuclear power and other thermal sources (coal, natural gas, oil, peat). It can be argued that hydro and thermal reservoirs determine electricity supply. Roughly speaking, the model takes into account electricity demand and supply, and several parameters related to them (water inflow, oil price, etc.), yielding finally the socially optimal outcomes. The author of this thesis is not aware of any similar model being tested before. There have been some other studies that are close to the Kauppi and Liski (2008) model, but those have a somewhat different focus. For example, a specific feature in the model is the focus on long-run capacity usage that differs from the previous studies on short-run market power. The closest study to the model is from California's wholesale electricity markets that, however, uses different methodology. Work is constructed as follows.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is acknowledged that wind power is a stochastic energy source compared to hydroelectric generation which is easily scheduled. In this paper a scheme for coordinating wind power plant and hydroelectric power plant is presented by using PMUs to measure and control the state of wind and hydro power plants. Hydroelectric generation is proposed as a method of energy reserve and compensation in the context of wind power fluctuation in order to avoid full or partial curtailment of wind generation to benefit wind providers. The feasibility of this proposed scheme is investigated by power flow calculation and stability analysis using the IEEE 30-bus power system model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sir Adam Beck ( a London, Ontario manufacturer, Mayor and Conservative member of the provincial legislature) was a champion of municipal and provincial power ownership. Beck become the “Power Minister” and chairman of the Hydro-Electric Power Commission of Ontario which was the world’s first publicly owned utility. In 1925 the first unit of the Hydro Electric Power Commission’s Queenston Chippawa hydro-electric development on the Niagara River went into service. The station was renamed in 1950 as “Sir Adam Beck #1”. This marked the 25th anniversary of Beck’s death. This is one of 2 generating stations in Niagara Falls. There is also Adam Beck Plant #2. The Niagara generating stations supply one quarter of all power used in New York State and Ontario.Ontario Hydro has two water tunnels which traverse the entire City of Niagara Falls from the Village of Chippawa in the South to the Sir Adam Beck Hydro Electric Generating Stations in the North. Also they are in the process of building the third tunnel. In addition, Ontario Hydro has a 13.6 km open canal which traverses the entire City of Niagara Falls. Source: http://www.hydroone.com/OurCompany/Pages/OurHistory.aspx