1000 resultados para Hydride generation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method of hydride generation-atomic fluorescence spectrometry was proposed in the present paper for the determination of trace arsenic and selenium in jellyfish. The samples were treated by the combination of microwave digestion and lyophilization. The optimal conditions for treating and analyzing samples were established. The problem of the effect of the superfluous acid in the digesting solution on the results was solved, and the influence of coexisting foreign ions on the determination of arsenic and selenium was investigated. The accuracy of the method was confirmed by the method of standard additions. This method proved to be simple, rapid and repeatable, and is suitable for the analysis of biologic samples containing water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flow injection hydride generation direct current plasma atomic emission spectrometric (FI-HG-DCP-AES) method was developed for the determination of lead at ng.ml-l level. Potassium ferricyanide (K3Fe(CN)6) was used along with sodium tetrahydroborate(III) (NaBH4) to produce plumbane (PbH4) in an acid medium. The design of a gas-liquid separator (hydride generator) was tested and the parameters of the flow injection system were optimized to achieve a good detection limit and sample throughput. The technique developed gave a detection limit of 0.7 ng.ml-l(3ob). The precision at 20 ng.ml"* level was 1.6 % RSD with 1 1 measurements (n=l 1). Volume of sample loop was 500 |J.l. A sample throughput of 120 h"^ was achieved. The transition elements, Fe(II), FeOH), Cd(n), Co(II), Mn(n), Ni(II) and Zn(n) do not interfere in this method but 1 mg,l'l Cu(II) will suppress 50 % of the signal from a sample containing 20 ng.ml'l Pb. This method was successfully applied to determine lead in a calcium carbonate (CaC03) matrix of banded coral skeletons from Si-Chang Island in Thailand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method using L-cysteine for the determination of arsenous acid (As(III)), arsenic acid (As(V)), monomethylarsonic acid (MMAA), and dimethylarsinic acid (DMAA) by hydride generation was demonstrated. The instrument used was a d.c. plasma atomic emission spectrometer (OCP-AES). Complete recovery was reported for As(III), As(V), and DMAA while 86% recovery was reported for MMAA. Detection limits were determined, as arsenic for the species listed previously, to be 1.2, 0.8, 1.1, and 1.0 ngemL-l, respectively. Precision values, at 50 ngemL-1 arsenic concentration, were f.80/0, 2.50/0, 2.6% and 2.6% relative standard deviation, respectively. The L-cysteine reagent was compared directly with the conventional hydride generation technique which uses a potassium iodide-hydrochloric acid medium. Recoveries using L-cysteine when compared with the conventional method provided the following results: similar recoveries were obtained for As(III), slightly better recoveries were obtained for As(V) and MMAA, and significantly better recoveries for DMAA. In addition, tall and sharp peak shapes were observed for all four species when using L-cysteine. The arsenic speciation method involved separation by ion exchange .. high perfonnance liquid chromatography (HPLC) with on-line hydride generation using the L.. cysteine reagent and measurement byOCP-AES. Total analysis time per sample was 12 min while the time between the start of subsequent runs was approximately 20 min. A binary . gradient elution program, which incorporated the following two eluents: 0.01 and 0.5 mM tri.. sodium citrate both containing 5% methanol (v/v) and both at a pH of approximately 9, was used during the separation by HPLC. Recoveries of the four species which were measured as peak area, and were normalized against As(III), were 880/0, 290/0, and 40% for DMAA, MMAA and As(V), respectively. Resolution factors between adjacent analyte peaks of As(III) and DMAA was 1.1; DMAA and MMAA was 1.3; and MMAA and As(V) was 8.6. During the arsenic speciation study, signals from the d.c. plasma optical system were measured using a new photon-signal integrating device. The_new photon integrator developed and built in this laboratory was based on a previously published design which was further modified to reflect current available hardware. This photon integrator was interfaced to a personal computer through an AID convertor. The .photon integrator has adjustable threshold settings and an adjustable post-gain device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic, bismuth, germanium, antimony and tin were simultaneously determined by continuous hydride generation and inductively coupled plasma-atomic emission spectrometry . I Hydrides were introduced into four different types of gas-liquid separators. Two of the gas-liquid separators were available in-house. A third was developed for this project and a fourth was based on a design used by CET AC. The best signal intensity was achieved by the type II frit-based gas-liquid separator, but the modified Cetac design gave promise for the future, due to low relative standard deviation. A method was developed for the determination of arsenic, bismuth, antimony and tin in low-alloy steels. Four standard reference materials from NIST were dissolved in 10 mL aqua regia without heat. Good agreement was obtained between experimental values and certified values for arsenic, bismuth, antimony and tin. The method was developed to provide the analyst with the opportunity to determine the analytes by using simple aqueous standards to prepare calibration lines. Within the limits of the samples analyzed, the method developed is independent of matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(Ill) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to online pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 mu g L-1 were obtained for total Sb and Sb (III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 19 and I I I 15% when 120 s of sample loading were used. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a preconcentration and separation system based on continuous flow hydride generation is proposed to improve the determination of As and Se by total reflection X-ray fluorescence spectrometry. The generated hydrides are continuously separated from the liquid phase and collected in a chamber containing 250 mul of HCI/HNO3 1:1 (v/v) solution. Hydride generation conditions and collection of the hydrides were evaluated. Under optimised conditions, enrichment factors of 55 for As and 82 for Se were attained. Detection limits of 0.3 mug l(-1) for As and Se were obtained when 20 ml of sample was used. Analysis of a natural water standard reference material from National Institute of Standard and Technology (SRM-1640) was in agreement with the certified values at the 95% confidence level. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method was developed for the simultaneous determination of As, Bi, Sb, and Se by flow injection hydride generation graphite furnace atomic absorption spectrometry. An alternative two-step sample treatment procedure was used. The sample was heated (80degreesC) for 10 min in 6 M HCl to reduce Se(VI) to Se(IV), followed by the addition of 1% (m/v) thiourea solution to reduce arsenic and antimony from the pentavalent to the trivalent states.With this procedure, all analytes were converted to their most favorable and sensitive oxidation states to generate the corresponding hydrides. The pre-treated sample solution was then processed in the flow system for in situ trapping and atomization in a graphite tube coated with iridium. The impermanent modifier remained stable up to 300 firings and new coating out significant were possible wit changes in the analytical performance.The accuracy was checked for As, Bi, Sb, and Se determination in water standard reference materials NIST 1640 and 1643d and the results were in agreement with the certified values at a 95% confidence level. Good recoveries (94-104%.) of spiked mineral waters and synthetic As(V), Sb(Ill), mixtures of As(Ill), Sb(V), Se(VI), and Se(IV) were also found. Calculated characteristic masses were 32 mug As, 79 mug Bi, 35 mug Sb, and 130 pg Se, and the corresponding limits of detection were 0.06, 0.16, 0.19, and 0.59 mug L-1, respectively. The repeatability for a typical solution containing 5 mug L-1 As, Bi, Sb, and Se was in the 1-3% range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automated system with a C-18 bonded silica gel packed minicolumn is proposed for spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration. Complexes formed between arsenic(III) and ammonium diethyl dithiophosphate (ADDP) are retained on a C-18 sorbent. The eluted As-DDP complexes are merged with a 1.5% (w/v) NaBH4 and the resulting solution is thereafter injected into the hydride generator/gas-liquid separator. The arsine generated is carried out by a stream of N-2 and trapped in an alkaline iodine solution in which the analyte is determined by the arsenomolybdenum blue method. With preconcentration time of 120 s, calibration in the 5.00-50.0 mu g As l(-1) range and sampling rate of about 20 samples h(-1) are achieved, corresponding to 36 mg ADDP plus 36 mg ammonium heptamolybdate plus 7 mg hydrazine sulfate plus 0.7 mg stannous chloride and about 7 mi sample consumed per determination. The detection limit is 0.06 mu g l(-1) and the relative standard deviation (n = 12) for a typical 17.0 mu g As l(-1) sample is ca. 6%. The accuracy was checked for arsenic determination in plant materials from the NIST (1572 citrus leaves; 1573 tomato leaves) and the results were in agreement with the certified values at 95% confidence level. Good recoveries (94-104%) of spiked tap waters, sugars and synthetic mixtures of trivalent and pentavalent arsenic were also found. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of using internal standardization (IS) to correct for interferences in hydride generation with in situ trapping in graphite furnace was evaluated. Arsenic was chosen as internal standard for Sb determination and Ir was used as permanent modifier. Fluctuations in the main parameters that affect the analytical results were minimized by IS and an effective contribution was verified in the studies of liquid phase interferences. Cobalt and Ni2+ were selected to illustrate the potential use of IS on the correction of interference by transition metals. The application of IS allows the Sb determination in samples containing up to 20-fold higher concentration of the Co2+ and Ni2+ when compared to the procedure without IS. The relative standard deviation of measurements varied from 0.3% to 0.7% and from 1.1% to 3.2% with and without IS, respectively. Recoveries within 92% and 107% of spiked aqueous solution containing Sb(III) and Sb(V) were found. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Analytical methods for the determination of trace amounts of germanium, tin and arsenic were established using hydride generation coupled with direct current plasma atomic emission spectrometry. A continuous gas flowing batch system for the hydride generation was investigated and was applied to the determination of germanium(Ge), tin(Sn), antimony(Sb) and lead(Pb) (Preliminary results suggest that it is also applicable to arsenic)As) ). With this system, the reproducibility of signals was improved and the determination was speeded up, compared with the conventional batch type hydride generation system. Each determination was complete within one minute. Interferences from a number of transition metal ions, especially from Pd(II), Pt(IV), Ni(II), Cu(II), Co(II), and Fe(II, III), have proven to be very serious under normal conditions, in the determination of germanium, tin, and arsenic. These interference effects were eliminated or significantly reduced in the presence of L-cystine or L-cysteine. Thus, a 10-1000 fold excess of Ni(II), Cu(II), Co(II), Fe(II), Pt(IV), Pd(II), etc. can be tolerated without interference, In the presence of L-cystine or L-cysteine, compared with absence of interference reducing agent. The methods for the determination of Ge, Sn, and As were examined by the analyses of standard reference materials. Interference effects from the sample matrix, for example, in transition metal-rich samples, copper, iron and steel, were eliminated by L-cystine (for As and Sn) and by LI cysteine (for Ge). The analysis of a number of standard reference materials gave excellent results of As and Sn contents in agreement with the certified values, showing there was no systematic interference. The detection limits for both germanium and tin were 20 pg ml- I . Preliminary studies were carried out for the determination of antimony and lead. Antimony was found to react with NaBH4, remaInIng from the previous determinations, giving an analytical signal. A reversed injection manner, i.e., injection of the NaBH4 solution prior to the analyte solution was used to avoid uncertainty caused by residual NaBH4 present and to ensure that an excess of NaB H4 was available. A solution of 0.4% L-cysteine was found to reduce the interference from selected transition metal ions, Co(II), Cu(II), Ni(II) and Pt(IV). Hydrochloric acid - hydrogen peroxide, nitric acid - ammonium persulphate, and potassium dichromate malic acid reaction systems for lead hydride generation were compared. The potassium dichromate - malic acid reaction medium proved to be the best with respect to reproducibility and minimal interference. Cu(II), Ni(II), and Fe(II) caused strong interference In lead determinations, which was not reduced by L-cysteine or Lcystine. Sodium citrate, ascorbic acid, dithizone, thiosemicarbazide and penicillamine reduced interferences to some extent. Further interference reduction studies were carried out uSIng a number of amino acids, glycine, alanine, valine, leucine and histidine, as possible interference reducing agents in the determination of germanium. From glycine, alanine, valine to leucine, the interference reduction effect in germanium determinations decreased. Histidine II was found to be very promising In the reduction of interference. In fact, histidine proved more efficient than L-cystine and L-cysteine In the reduction of interference from Ni(II) in the determination of germanium. Signal enhancement by easily ionized elements (EIEs), usually regarded as an interference effect in analysis by DCP-AES, was studied and successfully applied to advantage in improving the sensitivity and detection limit in the determination of As, Ge, Sn, Sb, and Pb. The effect of alkali and alkaline-earth elements on the determination of the above five hydride forming elements was studied. With the appropriate EIE, a signal enhancement of 40-115% was achieved. Linear calibration and good reproducibility were also obtained in the presence of EIEs. III

Relevância:

60.00% 60.00%

Publicador:

Resumo:

石墨管原位富集氢化物是近年来研究者比较感兴趣的一个问题,本工作建立了自己的氢化物发生石墨炉原位富集系统。结果表明:氢化物发生器的体积和导气管的材料均影响分析灵敏度,氢化物直接富集在石墨管内壁上比在平台上效果好,石墨炉作原子化器,可以大大减小氢化物形成元素的干扰,涂钯石墨管能在较低温度下富集氢化物应与钯的催化性能有关。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For nearly three decades, organogermanium compounds have become increasingly of interest owing to their extensive physiological and pharmaceutical activity. In this paper, two new high performance ion chromatographic methods for separation and determination of three kinds of organogermanium compounds beta-carboxyethylgermanium sesquioxide (I), beta-(alpha-methyl)-carboxyethylgermanium sesquioxide (II) and d-(beta-carboxyethyl)germanium hydroxide (III) were proposed. A Dionex DX-300 ion chromatograph equipped with a Dionex FED-II pulsed electrochemical detector (conductivity mode), and a Dionex AI-450 chromatography workstation was employed. The separation was achieved by using ion-exchange or ion-exclusion mechanism. The detection limits(S/N=3, expressed as germanium) for the three compounds were all below sub- mu g/mL level. The methods have been applied to the analysis of tonic oral drinks, and the average recoveries for the three compounds range from 95 - 108%. The results obtained were in agreement with those of hydride generation atomic fluorescence spectrometry (HG-AFS).