994 resultados para Human tooth germs
Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs
Resumo:
The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.
Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs
Resumo:
The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.
Resumo:
In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".
Resumo:
Purpose : To compare the radiopacity of 13 restorative materials, (a conventional glass-ionomer cement, three resin-modified glass-ionomer cements, six polyacid-modified resin-based composites, and three resin-based composites) to sound tooth structure. Materials and Methods: 315 specimens were made of the restorative materials (n= 21), of 2 min height and 4.1 mm diameter. Radiographs were taken of the specimens, together with the tooth structure sample and an aluminum step wedge. The radiopacity values of each specimen were taken using a transmission densitometer. Results: ANOVA and Tukey's test (95% level of confidence) revealed that, except for a resin-based composite, a polyacid-modified resin-based composite, a resin-modified glass-ionomer cement and the conventional glass-ionomer cement, all the evaluated restorative materials were more radiopaque than the tooth structure.
Resumo:
We performed a light microscope and a computer three-dimensional reconstruction study of serial sections of the molar enamel organ of 3- and 5-day-old rats perfused with Indian ink through the arterial system. The tooth germs were fixed in Bouin's solution, embedded in paraffin, sectioned and stained with haematoxylin and eosin. For the three-dimensional reconstruction, light micrographs of the serial sections were digitized, and aligned using the serial EM Align software downloaded from http://synapses.bu.edu/tools/. After alignment, the boundaries of the India-ink-filled blood vessels were manually traced with a mouse using the software IGL trace (version 1.26b), also downloaded from the above website. After tracing, a three-dimensional representation of the blood vessel contours was generated in a VRML format and visualized with the help of the software Cortona Web3D viewer (version 4.0) downloaded from http://www.parallelgraphics.com/products/cortona. Our results showed that in regions where ameloblasts are polarized the capillaries are arranged in three distinct levels: (1) penetrating and leaving capillaries in relation to the outer enamel epithelium; (2) capillaries crossing and branching inside the stellate reticulum; and (3) capillaries branching and anastomosing profusely within the stratum intermedium, thereby forming an extensive capillary plexus intimately associated with the cells of the stratum intermedium. The existence of a conspicuous capillary plexus intermingled with cells of the stratum intermedium, as shown in our results, suggests that some molecules produced by cells of the stratum intermedium could be released into the capillary plexus and thereafter carried to the dental follicle.
Resumo:
The purpose of this study was to evaluate in vitro three adhesive systems: a total etching single-component system (G1 Prime & Bond 2.1), a self-etching primer (G2 Clearfil SE Bond), and a self-etching adhesive (G3 One Up Bond F), through shear bond strength to enamel of human teeth, evaluating the type of fracture through stereomicroscopy, following the ISO guidance on adhesive testing. Thirty sound premolars were bisected mesiodistally and the buccal and lingual surfaces were embedded in acrylic resin, polished up to 600-grit sandpapers, and randomly assigned to three experimental groups (n = 20). Composite resin cylinders were added to the tested surfaces. The specimens were kept in distilled water (37°C/24 h), thermocycled for 500 cycles (5°C-55°C) and submitted to shear testing at a crosshead speed of 0.5 mm/min. The type of fracture was analyzed under stereomicroscopy and the data were submitted to Anova, Tukey and Chi-squared (5%) statistical analyses. The mean adhesive strengths were G1: 18.13 ± 6.49 MPa, (55% of resin cohesive fractures); G2: 17.12 ± 5.80 MPa (90% of adhesive fractures); and G3: 10.47 ± 3.14 MPa (85% of adhesive fractures). In terms of bond strength, there were no significant differences between G1 and G2, and G3 was significantly different from the other groups. G1 presented a different type of fracture from that of G2 and G3. In conclusion, although the total etching and self-etching systems presented similar shear bond strength values, the types of fracture presented by them were different, which can have clinical implications.
Resumo:
AIM To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. METHODOLOGY Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. RESULTS Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P < 0.05). This effect on VEGF was reduced by echinomycin (P < 0.01). Changes in normalized IL-6 and IL-8 levels upon treatment with L-mimosine did not reach the level of significance (P > 0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P < 0.05) and IL-8 levels (P < 0.05). CONCLUSIONS The prolyl hydroxylase inhibitor L-mimosine increased VEGF production via HIF-1 alpha in the tooth slice organ culture model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration.
Resumo:
The development of dentition is a fascinating process that involves a complex series of epithelial-mesenchymel signaling interactions. That such a precise process frequently goes awry is not surprising. Indeed, tooth agenesis is one of the most commonly inherited disorders in humans that affects up to twenty percent of the population and imposes significant functional, emotional and financial burdens on patients. Mutations in the paired box domain containing transcription factor PAX9 result in autosomal dominant tooth agenesis that primarily involves posterior dentition. Despite these advances, little is known about how PAX9 mediates key signaling actions in tooth development and how aberrations in PAX9 functions lead to tooth agenesis. As an initial step towards providing evidence for the pathogenic role of mutant PAX9 proteins, I performed a series of molecular genetic analyses aimed at resolving the structural and functional defects produced by a number of PAX9 mutations causing non-syndromic posterior tooth agenesis. It is likely that the pathogenic mechanism underlying tooth agenesis for the first two mutations studied (219InsG and IIe87Phe) is haploinsufficiency. For the six paired domain missense mutations studied, the lack of functional defects observed for three of the mutant proteins suggests that these mutations altered PAX9 function through alternate mechanisms. Next, I explored further the nature of the partnership between Pax9 and the Msx1 homeoprotein and their role in the expression of a downstream effector molecule, Bmp4. When viewed in the context of events occurring in dental mesenchyme, the results of these studies indicate that the Pax9-Msx1 protein interaction involves the localized up-regulation of Bmp4 activity that is mediated by synergistic interactions between the two transcription factors. Importantly, these assays corroborate in vivo data from mouse genetic studies and support reports of Pax9-dependent expression of Bmp4 in dental mesenchyme. Taken together, these results suggest that PAX9 mutations cause an early developmental defect due to an inability to maintain the inductive potential of dental mesenchyme through involvement in a pathway involving Msx1 and Bmp4. ^
Resumo:
Tooth enamel is the stiffest tissue in the human body with a well-organized microstructure. Developmental diseases, such as enamel hypomineralisation, have been reported to cause marked reduction in the elastic modulus of enamel and consequently impair dental function. We produce evidence, using site-specific transmission electron microscopy (TEM), of difference in microstructure between sound and hypomineralised enamel. Built upon that, we develop a mechanical model to explore the relationship of the elastic modulus of the mineral-protein composite structure of enamel with the thickness of protein layers and the direction of mechanical loading. We conclude that when subject to complex mechanical loading conditions, sound enamel exhibits consistently high stiffness, which is essential for dental function. A marked decrease in stiffness of hypomineralised enamel is caused primarily by an increase in the thickness of protein layers between apatite crystals and to a lesser extent by an increase in the effective crystal orientation angle. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: The aim was to analyze the expression of E-cadherin and beta-catenin in ameloblastomas and tooth germs to determine their roles in cell differentiation processes and invasiveness compared with odontogenesis. STUDY DESIGN: Twenty-one ameloblastoma cases (16 solid and 5 unicystic tumors) and 5 tooth germs were submitted to the immunohistochemical detection of E-cadherin and beta-catenin. Immunoreactivity was evaluated using descriptive and semiquantitative analysis, investigating the location and intensity of staining. The Fisher exact test was performed, and P values of <.05 were considered to indicate statistical significance. RESULTS: There was no statistically significant difference in the expression of E-cadherin and beta-catenin between solid and unicystic ameloblastomas (P = .59; P = .63; respectively). The same was found when comparing solid and unicystic ameloblastomas with the tooth germs for both E-cadherin (P = .53; P = .44; respectively) and beta-catenin (P = .12; P = .16; respectively). Nuclear staining of beta-catenin was observed in only 4 cases (3 solid and 1 unicystic tumor). CONCLUSION: The results showed no differences in the expression of E-cadherin or beta-catenin between tooth germs and solid and unicystic ameloblastomas. The expression of these molecules seems mainly to be related to the process of cell differentiation.
Resumo:
This thesis work focuses on the role of TGF-beta family antagonists during the development of mouse dentition. Tooth develops through an interaction between the dental epithelium and underlying neural crest derived mesenchyme. The reciprocal signaling between these tissues is mediated by soluble signaling molecules and the balance between activatory and inhibitory signals appears to be essential for the pattern formation. We showed the importance of Sostdc1 in the regulation of tooth shape and number. The absence of Sostdc1 altered the molar cusp patterning and led to supernumerary tooth formation both in the molar and incisor region. We showed that initially, Sostdc1 expression is in the mesenchyme, suggesting that dental mesenchyme may limit supernumerary tooth induction. We tested this in wild-type incisors by minimizing the amount of mesenchymal tissue surrounding the incisor tooth germs prior to culture in vitro. The cultured teeth phenocopied the extra incisor phenotype of the Sostdc1-deficient mice. Furthermore, we showed that minimizing the amount of dental mesenchyme in cultured Sostdc1-deficient incisors caused the formation of additional de novo incisors that resembled the successional incisor development resulting from activated Wnt signaling. Sostdc1 seemed to be able to inhibit both mesenchymal BMP4 and epithelial canonical Wnt signaling, which thus allows Sostdc1 to restrict the enamel knot size and regulate the tooth shape and number. Our work emphasizes the dual role for the tooth mesenchyme as a suppressor as well as an activator during tooth development. We found that the placode, forming the thick mouse incisor, is prone to disintegration during initiation of tooth development. The balance between two mesenchymal TGF-beta family signals, BMP4 and Activin is essential in this regulation. The inhibition of BMP4 or increase in Activin signaling led to the splitting of the large incisor placode into two smaller placodes resulting in thin incisors. These two signals appeared to have different effects on tooth epithelium and the analysis of the double null mutant mice lacking Sostdc1 and Follistatin indicated that these TGF-beta inhibitors regulate the mutual balance of BMP and Activin in vivo. In addition, this work provides an alternative explanation for the issue of incisor identity published in Science by Tucker et al. in 1998 and proposes that the molar like morphology that can be obtained by inhibiting BMP signaling is due to partial splitting of the incisor placodes and not due to change in tooth identity from the incisor to the molar. This thesis work presents possible molecular mechanisms that may have modified the mouse dental pattern during evolution leading to the typical rodent dentition of modern mouse. The rodent dentition is specialized for gnawing and consists of two large continuously growing incisors and toothless diastema region separating the molars and incisors. The ancestors of rodents had higher number of more slender incisors together with canines and premolars. Additionally, murine rodents, which include the mouse, have lost their ability for tooth replacement. This work has revealed that the inhibitory molecules appear to play a role in the tooth number suppression by delineating the spatial and temporal action of the inductive signals. The results suggest that Sostdc1 plays an essential role in several stages of tooth development through the regulation of both the BMP and Wnt pathway. The work shows a dormant sequential tooth forming potential present in wild type mouse incisor region and gives a new perspective on tooth suppression by dental mesenchyme. It reveals as well a novel mechanism to create a large mouse incisor through the regulation of mesenchymal balance between inductive and inhibitory signals.
Resumo:
Dioxins are organic toxicants that are known to impair tooth development, especially dental hard tissue formation. The most toxic dioxin congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Further, clinical studies suggest that maternal smoking during pregnancy can affect child s tooth development. One of the main components of tobacco smoke is the group of non-halogenated polycyclic aromatic hydrocarbons (PAHs), a representative of which is 7,12-dimethylbenz[a]anthracene (DMBA). Tributyltin (TBT), an organic tin compound, has been shown to impair bone mineralization in experimental animals. In addition to exposure to organic toxicants, a well-established cause for enamel hypomineralization is excess fluoride intake. The principal aim of this thesis project was to examine in vitro if, in addition to dioxins, other organic environmental toxicants, like PAHs and organic tin compounds, have adverse effects on tooth development, specifically on formation and mineralization of the major dental hard tissues, the dentin and the enamel. The second aim was to investigate in vitro if fluoride could intensify the manifestation of the detrimental developmental dental effects elicited by TCDD. The study was conducted by culturing mandibular first and second molar tooth germs of E18 NMRI mouse embryos in a Trowell-type organ culture and exposing them to DMBA, TBT, and sodium fluoride (NaF) and/or TCDD at various concentrations during the secretory and mineralization stages of development. Specific methods used were HE-staining for studying cell and tissue morphology, BrdU-staining for cell proliferation, TUNEL-staining for apoptosis, and QPCR, in situ hybridization and immunohistochemistry for the expressions of selected genes associated with mineralization. This thesis work showed that DMBA, TBT, TCDD and NaF interfere with dentin and enamel formation of embryonic mouse tooth in vitro, and that fluoride can potentiate the harmful effect of TCDD. The results suggested that adverse effects of TBT involve altered expression of genes associated with mineralization, and that DMBA and TBT as well as NaF and TCDD together primarily affect dentin mineralization. Since amelogenesis does not start until mineralization of dentin begins, impaired enamel matrix secretion could be a secondary effect. Dioxins, PAHs and organotins are all liposoluble and can be transferred to the infant by breast-feeding. Since doses are usually very low, developmental toxicity on most of the organs is difficult to indentify clinically. However, tooth may act as an indicator of exposure, since the major dental hard tissues, the dentin and the enamel, are not replaced once they have been formed. Thus, disturbed dental hard tissue formation raises the question of more extensive developmental toxicity.