986 resultados para Human lens


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human lens comprises two distinct regions in which the refractive index changes at different rates. The periphery contains a rapidly increasing refractive index gradient, which becomes steeper with age. The inner region contains a shallow gradient, which flattens with age, due to formation of a central plateau, of RI = 1.418, which reaches a maximum size of 7.0 × 3.05 mm around age 60 years. Formation of the plateau can be attributed to compression of fibre cells generated in prenatal life. Present in prenatal but not in postnatal fibre cells, γ-crystallin may play a role in limiting nuclear cell compression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To compare accuracies of different methods for calculating human lens power when lens thickness is not available. Methods: Lens power was calculated by four methods. Three methods were used with previously published biometry and refraction data of 184 emmetropic and myopic eyes of 184 subjects (age range [18, 63] years, spherical equivalent range [–12.38, +0.75] D). These three methods consist of the Bennett method, which uses lens thickness, our modification of the Stenström method and the Bennett¬Rabbetts method, both of which do not require knowledge of lens thickness. These methods include c constants, which represent distances from lens surfaces to principal planes. Lens powers calculated with these methods were compared with those calculated using phakometry data available for a subgroup of 66 emmetropic eyes (66 subjects). Results: Lens powers obtained from the Bennett method corresponded well with those obtained by phakometry for emmetropic eyes, although individual differences up to 3.5D occurred. Lens powers obtained from the modified¬Stenström and Bennett¬Rabbetts methods deviated significantly from those obtained with either the Bennett method or phakometry. Customizing the c constants improved this agreement, but applying these constants to the entire group gave mean lens power differences of 0.71 ± 0.56D compared with the Bennett method. By further optimizing the c constants, the agreement with the Bennett method was within ± 1D for 95% of the eyes. Conclusion: With appropriate constants, the modified¬Stenström and Bennett¬Rabbetts methods provide a good approximation of the Bennett lens power in emmetropic and myopic eyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that the human lens contains glycerophospholipids with ether linkages. These lipids differ from conventional glycerophospholipids in that the sn-1 substituent is attached to the glycerol backbone via an 1-O-alkyl or an 1-O-alk-1'-enyl ether rather than an ester bond. The present investigation employed a combination of collision-induced dissociation (CID) and ozone-induced dissociation (OzID) to unambiguously distinguish such 1-O-alkyl and 1-O-alk-1'-enyl ethers. Using these methodologies the human lens was found to contain several abundant 1-O-alkyl glycerophos-phoethanolamines, including GPEtn(16:0e/9Z-18:1), GPEtn(11Z-18:1e/9Z-18:1), and GPEtn(18:0e/9Z-18:1), as well as a related series of unusual 1-O-alkyl glycerophosphoserines, including GPSer(16:0e/9Z-18:1), GPSer(11Z-18:1e/9Z-18:1), GPSer(18:0e/9Z-18:1) that to our knowledge have not previously been observed in human tissue. Isomeric 1-O-alk-1'-enyl ethers were absent or in low abundance. Examination of the double bond position within the phospholipids using OzID revealed that several positional isomers were present, including sites of unsaturation at the n-9, n-7, and even n-5 positions. Tandem CID/OzID experiments revealed a preference for double bonds in the n-7 position of 1-O-ether linked chains, while n-9 double bonds predominated in the ester-linked fatty acids [e.g., GPEtn(11Z-18:1e/9Z-18:1) and GPSer(11Z-18:1e/9Z-18:1)]. Different combinations of these double bond positional isomers within chains at the sn-1 and sn-2 positions point to a remarkable molecular diversity of ether-lipids within the human lens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipid composition of the human lens is distinct from most other tissues in that it is high in dihydrosphingomyelin and the most abundant glycerophospholipids in the lens are unusual 1-O-alkyl-ether linked phosphatidylethanolamines and phosphatidylserines. In this study, desorption electrospray ionization (DESI) mass spectrometry-imaging was used to determine the distribution of these lipids in the human lens along with other lipids including, ceramides, ceramide-1-phosphates, and lyso 1-O-alkyl ethers. To achieve this, 25 μm lens slices were mounted onto glass slides and analyzed using a linear ion-trap mass spectrometer equipped with a custom-built, 2-D automated DESI source. In contrast to other tissues that have been previously analyzed by DESI, the presence of a strong acid in the spray solvent was required to desorb lipids directly from lens tissue. Distinctive distributions were observed for [M + H]+ ions arising from each lipid class. Of particular interest were ionized 1-O-alkyl phosphatidylethanolamines and phosphatidylserines, PE (18:1e/18:1), and PS (18:1e/18:1), which were found in a thin ring in the outermost region of the lens. This distribution was confirmed by quantitative analysis of lenses that were sectioned into four distinct regions (outer, barrier, inner, and core), extracted and analyzed by electrospray ionization tandem mass spectrometry. DESI-imaging also revealed a complementary distribution for the structurally-related lyso 1-O-alkyl phosphatidylethanolamine, LPE (18:1e), which was localized closer to the centre of the lens. The data obtained in this study indicate that DESI-imaging is a powerful tool for determining the spatial distribution of human lens lipids. © 2010 American Society for Mass Spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of an internal barrier to the diffusion of small molecules in the lens during middle age is hypothesized to be a key event in the development of age-related nuclear (ARN) cataract. Changes in membrane lipids with age may be responsible. In this study, we investigated the effect of age on the distribution of sphingomyelins, the most abundant lens phospholipids. Human lens sections were initially analyzed by MALDI mass spectrometry imaging. A distinct annular distribution of the dihydrosphingomyelin, DHSM (d18:0/16:0), in the barrier region was observed in 64- and 70-year-old lenses but not in a 23-year-old lens. An increase in the dihydroceramide, DHCer (d18:0/16:0), in the lens nucleus was also observed in the older lenses. These findings were supported by ESI mass spectrometry analysis of lipid extracts from lenses dissected into outer, barrier, and nuclear regions. A subsequent analysis of 18 lenses ages 20-72 years revealed that sphingomyelin levels increased with age in the barrier region until reaching a plateau at approximately 40 years of age. Such changes in lipid composition will have a significant impact on the physical properties of the fiber cell membranes and may be associated with the formation of a barrier.-Deeley, J. M., J. A. Hankin, M. G. Friedrich, R. C. Murphy, R. J. W. Truscott, T. W. Mitchell, and S. J. Blanksby. Sphingolipid distribution changes with age in the human lens. J. Lipid Res. 2010. 51: 2753-2760.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospray ionisation tandem mass spectrometry has allowed the unambiguous identification and quantification of individual lens phospholipids in human and six animal models. Using this approach ca. 100 unique phospholipids have been characterised. Parallel analysis of the same lens extracts by a novel direct-insertion electron-ionization technique found the cholesterol content of human lenses to be significantly higher (ca. 6 times) than lenses from the other animals. The most abundant phospholipids in all the lenses examined were choline-containing phospholipids. In rat, mouse, sheep, cow, pig and chicken, these were present largely as phosphatidylcholines, in contrast 66% of the total phospholipid in Homo sapiens was sphingomyelin, with the most abundant being dihydrosphingomyelins, in particular SM(d18:0/16:0) and SM(d18:0/24:1). The abundant glycerophospholipids within human lenses were found to be predominantly phosphatidylethanolamines and phosphatidylserines with surprisingly high concentrations of ether-linked alkyl chains identified in both classes. This study is the first to identify the phospholipid class (head-group) and assign the constituent fatty acid(s) for each lipid molecule and to quantify individual lens phospholipids using internal standards. These data clearly indicate marked differences in the membrane lipid composition of the human lens compared to commonly used animal models and thus predict a significant variation in the membrane properties of human lens fibre cells compared to those of other animals. © 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We developed orthogonal least-squares techniques for fitting crystalline lens shapes, and used the bootstrap method to determine uncertainties associated with the estimated vertex radii of curvature and asphericities of five different models. Three existing models were investigated including one that uses two separate conics for the anterior and posterior surfaces, and two whole lens models based on a modulated hyperbolic cosine function and on a generalized conic function. Two new models were proposed including one that uses two interdependent conics and a polynomial based whole lens model. The models were used to describe the in vitro shape for a data set of twenty human lenses with ages 7–82 years. The two-conic-surface model (7 mm zone diameter) and the interdependent surfaces model had significantly lower merit functions than the other three models for the data set, indicating that most likely they can describe human lens shape over a wide age range better than the other models (although with the two-conic-surfaces model being unable to describe the lens equatorial region). Considerable differences were found between some models regarding estimates of radii of curvature and surface asphericities. The hyperbolic cosine model and the new polynomial based whole lens model had the best precision in determining the radii of curvature and surface asphericities across the five considered models. Most models found significant increase in anterior, but not posterior, radius of curvature with age. Most models found a wide scatter of asphericities, but with the asphericities usually being positive and not significantly related to age. As the interdependent surfaces model had lower merit function than three whole lens models, there is further scope to develop an accurate model of the complete shape of human lenses of all ages. The results highlight the continued difficulty in selecting an appropriate model for the crystalline lens shape.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE. To understand the molecular features underlying autosomal dominant congenital cataracts caused by the deletion mutations W156X in human gamma D-crystallin and W157X in human gamma C-crystallin. METHODS. Normal and mutant cDNAs (with the enhanced green fluorescent protein [EGFP] tag in the front) were cloned into the pEGFP-C1 vector, transfected into various cell lines, and observed under a confocal microscope for EGFP fluorescence. Normal and W156X gamma D cDNAs were also cloned into the pET21a(+) vector, and the recombinant proteins were overexpressed in the BL-21(DE3) pLysS strain of Escherichia coli, purified, and isolated. The conformational features, structural stability, and solubility in aqueous solution of the mutant protein were compared with those of the wild type using spectroscopic methods. Comparative molecular modeling was performed to provide additional structural information. RESULTS. Transfection of the EGFP-tagged mutant cDNAs into several cell lines led to the visualization of aggregates, whereas that of wild-type cDNAs did not. Turning to the properties of the expressed proteins, the mutant molecules show remarkable reduction in solubility. They also seem to have a greater degree of surface hydrophobicity than the wild-type molecules, most likely accounting for self-aggregation. Molecular modeling studies support these features. CONCLUSIONS. The deletion of C-terminal 18 residues of human gamma C-and gamma D-crystallins exposes the side chains of several hydrophobic residues in the sequence to the solvent, causing the molecule to self-aggregate. This feature appears to be reflected in situ on the introduction of the mutants in human lens epithelial cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

N epsilon-(Carboxymethyl)lysine (CML) is formed on oxidative cleavage of carbohydrate adducts to lysine residues in glycated proteins in vitro [Ahmed et al. (1988) J. Biol. Chem. 263, 8816-8821; Dunn et al. (1990) Biochemistry 29, 10964-10970]. We have shown that, in human lens proteins in vivo, the concentration of fructose-lysine (FL), the Amadori adduct of glucose to lysine, is constant with age, while the concentration of the oxidation product, CML, increases significantly with age [Dunn et al. (1989) Biochemistry 28, 9464-9468]. In this work we extend our studies to the analysis of human skin collagen. The extent of glycation of insoluble skin collagen was greater than that of lens proteins (4-6 mmol of FL/mol of lysine in collagen versus 1-2 mmol of FL/mol of lysine in lens proteins), consistent with the lower concentration of glucose in lens, compared to plasma. In contrast to lens, there was a slight but significant age-dependent increase in glycation of skin collagen, 33% between ages 20 and 80. As in lens protein, CML, present at only trace levels in neonatal collagen, increased significantly with age, although the amount of CML in collagen at 80 years of age, approximately 1.5 mmol of CML/mol of lysine, was less than that found in lens protein, approximately 7 mmol of CML/mol of lysine. The concentration of N epsilon-(carboxymethyl)hydroxylysine (CMhL), the product of oxidation of glycated hydroxylysine, also increased with age in collagen, in parallel with the increase in CML, from trace levels at infancy to approximately 5 mmol of CMhL/mol of hydroxylysine at age 80.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carboxymethyllysine (CML) has been identified as a modified amino acid that accumulates with age in human lens proteins and collagen. CML may be formed by oxidation of fructoselysine (FL), the Amadori adduct formed on nonenzymatic glycosylation of lysine residues in protein, or by reaction of ascorbate with protein under autoxidizing conditions. We proposed that measurements of tissue and urinary CML may be useful as indices of oxidative stress or damage to proteins in vivo. To determine the extent to which oxidation of nonenzymatically glycosylated proteins contributes to urinary CML, we measured the urinary concentrations of FL and CML in diabetic (n = 26) and control (n = 28) patients. The urinary concentration of FL correlated strongly with HbA1 measurements and was significantly higher in diabetic compared with control samples (9.2 +/- 6.5 and 4.0 +/- 2.8 micrograms/mg creatinine, respectively; P less than 0.0001). There was also a strong correlation between the concentrations of CML and FL in both diabetic and control urine (r = 0.67, P less than 0.0001) but only a weakly significant increase in the CML concentration in diabetic compared with control urine (1.2 +/- 0.5 and 1.0 +/- 0.3 micrograms/mg creatinine, respectively; P = 0.05). The molar ratio of CML to FL was significantly lower in diabetic compared with control patients (0.25 +/- 0.12 and 0.43 +/- 0.16, respectively; P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some fifty years earlier Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young’s contributions. Method: We attempted to derive Young’s equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. Results: We did not confirm Young’s equation for the axial gradient to provide aberration-free optics, but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index towards the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Conclusion: Young’s theoretical work in gradient-index optics received no acknowledgement from either his contemporaries or later authors. While his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young’s work deserves wider recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The position(s) of carbon-carbon double bonds within lipids can dramatically affect their structure and reactivity and thus has a direct bearing on biological function. Commonly employed mass spectrometric approaches to the characterization of complex lipids, however, fail to localize sites of unsaturation within the molecular structure and thus cannot distinguish naturally occurring regioisomers. In a recent communication \[Thomas, M. C.; Mitchell, T. W.; Blanksby, S. J. J. Am. Chem. Soc. 2006, 128, 58-59], we have presented a new technique for the elucidation of double bond position in glycerophospholipids using ozone-induced fragmentation within the source of a conventional electrospray ionization mass spectrometer. Here we report the on-line analysis, using ozone electrospray mass spectrometry (OzESI-MS), of a broad range of common unsaturated lipids including acidic and neutral glycerophospholipids, sphingomyelins, and triacylglycerols. All lipids analyzed are found to form a pair of chemically induced fragment ions diagnostic of the position of each double bond(s) regardless of the polarity, the number of charges, or the adduction (e.g., \[M - H](-), \[M - 2H](2-), \[M + H](+), \[M + Na](+), \[M + NH4](+)). The ability of OzESI-MS to distinguish lipids that differ only in the position of the double bonds is demonstrated using the glycerophosphocholine standards, GPCho(9Z-18:1/9Z-18:1) and GPCho(6Z-18:1/6Z-18:1). While these regioisomers cannot be differentiated by their conventional tandem mass spectra, the OzESI-MS spectra reveal abundant fragment ions of distinctive mass-to-charge ratio (m/z). The approach is found to be sufficiently robust to be used in conjunction with the m/z 184 precursor ion scans commonly employed for the identification of phosphocholine-containing lipids in shotgun lipidomic analyses. This tandem OzESI-MS approach was used, in conjunction with conventional tandem mass spectral analysis, for the structural characterization of an unknown sphingolipid in a crude lipid extract obtained from a human lens. The OzESI-MS data confirm the presence of two regioisomers, namely, SM(d18:0/15Z-24:1) and SM(d18:0/17Z-24:1), and suggest the possible presence of a third isomer, SM(d18:0/19Z-24:1), in lower abundance. The data presented herein demonstrate that OzESI-MS is a broadly applicable, on-line approach for structure determination and, when used in conjunction with established tandem mass spectrometric methods, can provide near complete structural characterization of a range of important lipid classes. As such, OzESI-MS may provide important new insight into the molecular diversity of naturally occurring lipids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including \[M + H](+), \[M + Li](+), \[M + Na](+), and \[M H](-): in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human lens nucleus is formed in utero, and from birth onwards, there appears to be no significant turnover of intracellular proteins or membrane components. Since, in adults, this region also lacks active enzymes, it offers the opportunity to examine the intrinsic stability of macromolecules under physiological conditions. Fifty seven human lenses, ranging in age from 12 to 82 years, were dissected into nucleus and cortex, and the nuclear lipids analyzed by electrospray ionization tandem mass spectrometry. In the first four decades of life, glycerophospholipids (with the exception of lysophosphatidylethanolamines) declined rapidly, such that by age 40, their content became negligible. In contrast the level of ceramides and dihydroceramides, which were undetectable prior to age 30, increased approximately 100-fold. The concentration of sphingomyelins and dihydrosphingomyelins remained unchanged over the whole life span. As a consequence of this marked alteration in composition, the properties of fiber cell membranes in the centre of young lenses are likely to be very different from those in older lenses. Interestingly, the identification of age 40 years as a time of transition in the lipid composition of the nucleus coincides with previously reported macroscopic changes in lens properties (e.g., a massive age-related increase in lens stiffness) and related pathologies such as presbyopia. The underlying reasons for the dramatic change in the lipid profile of the human lens with age are not known, but are most likely linked to the stability of some membrane lipids in a physiological environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.