927 resultados para Human comfort analysis
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This thesis argues that an action in educational negligence should be available in Australia to provide a remedy for failure by schools and teachers to provide an adequate education as required by Australia’s human rights obligations. The thesis substantiates a duty of care to provide an adequate education under general principles of the law of negligence in appropriate cases. Although some protection exists for disabled students in Australia’s anti-discrimination and other legislation, non-disabled students are not afforded redress under existing causes of action. The educational negligence action provides a suitable remedy in an era of professional educational accountability.
Resumo:
This paper describes a safety data recording and analysis system that has been developed to capture safety occurrences including precursors using high-definition forward-facing video from train cabs and data from other train-borne systems. The paper describes the data processing model and how events detected through data analysis are related to an underlying socio-technical model of accident causation. The integrated approach to safety data recording and analysis insures systemic factors that condition, influence or potentially contribute to an occurrence are captured both for safety occurrences and precursor events, providing a rich tapestry of antecedent causal factors that can significantly improve learning around accident causation. This can ultimately provide benefit to railways through the development of targeted and more effective countermeasures, better risk models and more effective use and prioritization of safety funds. Level crossing occurrences are a key focus in this paper with data analysis scenarios describing causal factors around near-miss occurrences. The paper concludes with a discussion on how the system can also be applied to other types of railway safety occurrences.
Resumo:
This is an electronic version of the accepted paper in the journal:Advances in the Economic Analysis of Participatory and Labor-Managed Firms. Volumen. 12
Resumo:
As part of the investigations into a surgical incident involving the accidental retention inside a patient's venous system of a guide wire for central venous catheterisation (CVC), the Human Error Assessment and Reduction Technique (HEART) was used to examine the potential for further occurrences. It was found to be time-efficient and to yield plausible probabilities of human error, although its use in healthcare has challenges, suggesting adaptation would be beneficial.
Resumo:
This book presents the proceedings of the international conference on Contemporary Ergonomics and Human Factors 2013.
Resumo:
Mickey Mouse, one of the world's most recognizable cartoon characters, did not wear a shirt in his earliest incarnation in theatrical shorts and, for many years, Donald Duck did not wear pants and still rarely does so. Especially when one considers the era in which these figures were first created by the Walt Disney Studio, in the 1920s and 1930s, why are they portrayed without full clothing? The obvious answer, of course, is that they are animals, and animals do not wear clothes. But these are no ordinary animals: in most cases, they do wear clothing - some clothing, at least - and they walk on two legs, talk in a more or less intelligible fashion, and display a number of other anthropomorphic traits. If they are essentially animals, why do they wear clothing at all? On the other hand, if these characters are more human than animal, as suggested by other behavioral traits - they walk, talk, work, read, and so on - why are they not more often fully clothed? To answer these questions I undertook three major research strategies used to gather evidence: interpretive textual analysis of 321 cartoons; secondary analysis of interviews conducted with the animators who created the Disney characters; and historical and archival research on the Disney Company and on the times and context in which it functioned. I was able to identify five themes that played a large part in what kind of clothing a character wore; first, the character's gender and/or sexuality; second, what species or "race" the character was; third, the character's socio-economic status; fourth, the degree to which the character was anthropomorphized; and, fifth, the context in which the character and its clothing appeared in a particular scene or narrative. I concluded that all of these factors played a part in determining, to some extent, the clothing worn by particular characters at particular times. However, certain patterns emerged from the analysis that could not be explained by these factors alone or in combination. Therefore, my analysis also investigates the individual and collective attitudes and desires of the men in the Disney studio who were responsible for creating these characters and the cultural conditions under which they were created. Drawing on literature from the psychoanalytic approach to film studies, I argue that the clothing choices spoke to an idealized fantasy world to which the animators (most importantly, Walt Disney himself), and possibly wider society, wanted to return.
Resumo:
Analysis of human behaviour through visual information has been a highly active research topic in the computer vision community. This was previously achieved via images from a conventional camera, but recently depth sensors have made a new type of data available. This survey starts by explaining the advantages of depth imagery, then describes the new sensors that are available to obtain it. In particular, the Microsoft Kinect has made high-resolution real-time depth cheaply available. The main published research on the use of depth imagery for analysing human activity is reviewed. Much of the existing work focuses on body part detection and pose estimation. A growing research area addresses the recognition of human actions. The publicly available datasets that include depth imagery are listed, as are the software libraries that can acquire it from a sensor. This survey concludes by summarising the current state of work on this topic, and pointing out promising future research directions.
Resumo:
Incluye Bibliografía
Resumo:
The human movement analysis (HMA) aims to measure the abilities of a subject to stand or to walk. In the field of HMA, tests are daily performed in research laboratories, hospitals and clinics, aiming to diagnose a disease, distinguish between disease entities, monitor the progress of a treatment and predict the outcome of an intervention [Brand and Crowninshield, 1981; Brand, 1987; Baker, 2006]. To achieve these purposes, clinicians and researchers use measurement devices, like force platforms, stereophotogrammetric systems, accelerometers, baropodometric insoles, etc. This thesis focus on the force platform (FP) and in particular on the quality assessment of the FP data. The principal objective of our work was the design and the experimental validation of a portable system for the in situ calibration of FPs. The thesis is structured as follows: Chapter 1. Description of the physical principles used for the functioning of a FP: how these principles are used to create force transducers, such as strain gauges and piezoelectrics transducers. Then, description of the two category of FPs, three- and six-component, the signals acquisition (hardware structure), and the signals calibration. Finally, a brief description of the use of FPs in HMA, for balance or gait analysis. Chapter 2. Description of the inverse dynamics, the most common method used in the field of HMA. This method uses the signals measured by a FP to estimate kinetic quantities, such as joint forces and moments. The measures of these variables can not be taken directly, unless very invasive techniques; consequently these variables can only be estimated using indirect techniques, as the inverse dynamics. Finally, a brief description of the sources of error, present in the gait analysis. Chapter 3. State of the art in the FP calibration. The selected literature is divided in sections, each section describes: systems for the periodic control of the FP accuracy; systems for the error reduction in the FP signals; systems and procedures for the construction of a FP. In particular is detailed described a calibration system designed by our group, based on the theoretical method proposed by ?. This system was the “starting point” for the new system presented in this thesis. Chapter 4. Description of the new system, divided in its parts: 1) the algorithm; 2) the device; and 3) the calibration procedure, for the correct performing of the calibration process. The algorithm characteristics were optimized by a simulation approach, the results are here presented. In addiction, the different versions of the device are described. Chapter 5. Experimental validation of the new system, achieved by testing it on 4 commercial FPs. The effectiveness of the calibration was verified by measuring, before and after calibration, the accuracy of the FPs in measuring the center of pressure of an applied force. The new system can estimate local and global calibration matrices; by local and global calibration matrices, the non–linearity of the FPs was quantified and locally compensated. Further, a non–linear calibration is proposed. This calibration compensates the non– linear effect in the FP functioning, due to the bending of its upper plate. The experimental results are presented. Chapter 6. Influence of the FP calibration on the estimation of kinetic quantities, with the inverse dynamics approach. Chapter 7. The conclusions of this thesis are presented: need of a calibration of FPs and consequential enhancement in the kinetic data quality. Appendix: Calibration of the LC used in the presented system. Different calibration set–up of a 3D force transducer are presented, and is proposed the optimal set–up, with particular attention to the compensation of non–linearities. The optimal set–up is verified by experimental results.
Resumo:
Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
Includes bibliographical references.