991 resultados para Hot Environment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Bos taurus (Hereford) steers (body weight 324 22 kg) were used in a 45-day study with a replicated 3 x 3 Latin-square design. Three treatments [ad libitum feeding (ADLIB); limit feeding, 85% of ad libitum (LIMIT); bunk management feeding where steers were only given access to feed from 1600 to 0800 hours the following day (BUNK)] were imposed over 3 periods, with 2 steers assigned to each treatment in each period. Cattle were managed in a temperature-controlled metabolism unit and were exposed to both thermoneutral (17.7degreesC-26.1degreesC) and hot (16.7degreesC-32.9degreesC) environmental conditions. By design, during the thermoneutral period, the ADLIB cattle displayed greater intake (P < 0.05) than the LIMIT group, with the BUNK group being intermediate. However, during the hot period, both the LIMIT and BUNK treatment groups increased feed intake 4-5%, whereas feed intake of the ADLIB treatment group declined nearly 2%. During both periods respiration rate (RR, breath/min) followed the same pattern that was observed for feed intake, with the greatest (P < 0.05) RR found in the ADLIB treatment group (81.09 and 109.55, thermoneutral and hot, respectively) and lowest (P < 0.05) RR in the LIMIT treatment group (74.47 and 102.76, thermoneutral and hot, respectively). Rectal temperature (RT) did not differ among treatments during the thermoneutral period or the first hot day, although during the thermoneutral period the ADLIB treatment group did tend to display a lower RT, possibly as a result of other physiological processes (pulse rate and RR) aiding to keep RT lower. During the hot period, differences in RT were found on Day 5, with the LIMIT cattle having lower (P < 0.10) RT (38.92degreesC) than the ADLIB (39.18degreesC) cattle, with BUNK cattle RT (39.14degreesC) being intermediate. However, when hourly data were examined, the ADLIB cattle had greater(P < 0.05) RT than the BUNK and LIMIT at 1800 hours and greater RT (P < 0.05) than the LIMIT group at 1400, 1500, and 1600 hours. Clearly, a change in diurnal RT pattern was obtained by using the LIMIT and BUNK feeding regimen. Both of these groups displayed a peak RT during the hot conditions, between 2100 and 2200 hours, whereas the ADLIB group displayed a peak RT between 1400 and 1500 hours, a time very close to when peak climatic stress occurs. Based on these results it is apparent that feedlot managers could alleviate the effects of adverse hot weather on cattle by utilising either a limit-feeding regimen or altering bunk management practices to prevent feed from being consumed several hours prior to the hottest portion of the day.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to develop statistical models to predict respiratory heat loss in dairy cattle using simple physiological and environmental measurements, 15 Holstein cows were observed under field conditions in a tropical environment, in which the air temperature reached up to 40 &DEG; C. The measurements of latent and sensible heat loss from the respiratory tract of the animals were made by using a respiratory mask. The results showed that under air temperatures between 10 and 35 &DEG; C sensible heat loss by convection decreased from 8.24 to 1.09 W m(-2), while the latent heat loss by evaporation increased from 1.03 to 56.51 W m(-2). The evaporation increased together with the air temperature in almost a linear fashion until 20 &DEG; C, but it became increasingly high as the air temperature rose above 25 &DEG; C. Convection was a mechanism of minor importance for respiratory heat transfer. In contrast, respiratory evaporation was an effective means of thermoregulation for Holsteins in a hot environment. Mathematical models were developed to predict both the sensible and latent heat loss from the respiratory tract in Holstein cows under field conditions, based on measurements of the ambient temperature, and other models were developed to predict respiration rate, tidal volume, mass flow rate and expired air temperature as functions of the ambient temperature and other variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waste combustion has gone from being a volume reducing discarding-method to an energy recovery process for unwanted material that cannot be reused or recycled. Different fractions of waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and building and demolition waste, is common, either as separate fuels or mixed with, for example, municipal solid waste. Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a complicated fuel. Differences in calorific values, ash content, moisture content, and changing levels of elements, such as Cl and alkali metals, are common in waste fuel. Moreover, waste contains much higher levels of troublesome trace elements, such as Zn, which is thought to accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and may cause fouling and corrosion of heat exchanger surfaces. This thesis examines waste fuels and waste combustion from different angles, with the objective of giving a better understanding of waste as an important fuel in today’s fuel economy. Several chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal variations, and to study the presence of Zn in waste. Data from the characterisation campaigns were used for thermodynamic equilibrium calculations to follow trends and determine the effect of changing concentrations of various elements. The thesis also includes a study of the thermal behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of alkali metals and Zn from the fuel. As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste combustion as a part of the European Union emission trading system in the beginning of 2013 there was a need for combustion plants to find a usable and reliable method to determine the fossil content. Four different methods were studied in full-scale of seven combustion plants; 14Canalysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a patented balance method that is using a software program to calculate the fossil content based on parameters from the plant. The study showed that approximately one third of the coal in Swedish waste mixtures has fossil origins and presented the plants with information about the four different methods and their advantages and disadvantages. Characterisation campaigns also showed that industrial waste contain higher levels of trace elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different plants with varying mixtures between municipal solid waste and industrial waste. A review study of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is basically determined by its natural occurrence and it is typically 10-100 mg kg-1. The thermal behaviour of Zn is of importance to understand the possible reactions taking place in the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) it was shown that chlorination of ZnO with HCl gas is possible. Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale study with the same conditions. The study showed that the fouling rate on deposit probes were decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn volatilised depends on the reactor temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydration is recommended in order to decrease the overload on the cardiovascular system when healthy individuals exercise, mainly in the heat. To date, no criteria have been established for hydration for hypertensive (HY) individuals during exercise in a hot environment. Eight male HY volunteers without another medical problem and 8 normal (NO) subjects (46 ± 3 and 48 ± 1 years; 78.8 ± 2.5 and 79.5 ± 2.8 kg; 171 ± 2 and 167 ± 1 cm; body mass index = 26.8 ± 0.7 and 28.5 ± 0.6 kg/m²; resting systolic (SBP) = 142.5 and 112.5 mmHg and diastolic blood pressure (DBP) = 97.5 and 78.1 mmHg, respectively) exercised for 60 min on a cycle ergometer (40% of VO2peak) with (500 ml 2 h before and 115 ml every 15 min throughout exercise) or without water ingestion, in a hot humid environment (30ºC and 85% humidity). Rectal (Tre) and skin (Tsk) temperatures, heart rate (HR), SBP, DBP, double product (DP), urinary volume (Vu), urine specific gravity (Gu), plasma osmolality (Posm), sweat rate (S R), and hydration level were measured. Data were analyzed using ANOVA in a split plot design, followed by the Newman-Keuls test. There were no differences in Vu, Posm, Gu and S R responses between HY and NO during heat exercise with or without water ingestion but there was a gradual increase in HR (59 and 51%), SBP (18 and 28%), DP (80 and 95%), Tre (1.4 and 1.3%), and Tsk (6 and 3%) in HY and NO, respectively. HY had higher HR (10%), SBP (21%), DBP (20%), DP (34%), and Tsk (1%) than NO during both experimental situations. The exercise-related differences in SBP, DP and Tsk between HY and NO were increased by water ingestion (P < 0.05). The results showed that cardiac work and Tsk during exercise were higher in HY than in NO and the difference between the two groups increased even further with water ingestion. It was concluded that hydration protocol recommended for NO during exercise could induce an abnormal cardiac and thermoregulatory responses for HY individuals without drug therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La exposición a altas temperaturas en ambientes laborales conlleva a cambios fisiológicos que se manifiestan como mecanismos de compensación a la alteración del equilibrio homeostático corporal. El propósito del presente estudio fue determinar los cambios y el comportamiento de variables fisiológicas a través de frecuencia cardiaca, densidad urinaria, temperatura corporal y tasa de sudoración, en dos escenarios con condiciones térmicas ambientales diferentes definidas por la exposición (grupo expuesto y no expuesto). Adicional, en dos áreas de trabajo diferentes correspondientes al proceso de fundición del acero, una de ellas, Horno electrico donde se hace la fusión de la chatarra y demás materias primas, obteniendo así el acero liquido, el cual se vuelca en el Horno Cuchara y en este, libre ya de escoria se realiza el afino y ajuste definitivo de la composición química del acero. Objetivos: Identificar la relación de las respuestas fisiológicas a carga física y térmica, comparar las respuestas funcionales registradas en el grupo expuestos y no expuestos y contribuir a la introducción de nuevos indicadores para evaluar carga e intensidad de trabajo con fines de normalización ergonómica. Método: Investigación experimental en una muestra de 30 trabajadores evaluados en dos condiciones ambientales diferentes. La temperatura oral se registró al inicio de la jornada y con intervalos de toma de 3 horas. La frecuencia cardiaca (HR) se registró durante las 8 horas de trabajo continuas con pulsometría. Igualmente, se estimó la sudoración por pérdida de masa corporal entre el inicio y el final de la jornada laboral teniendo en cuenta ingestas y perdidas. El procesamiento estadístico se realizó con el programa SPSS v. 20.0, calculándose medidas de tendencia central y dispersión, prueba de wilconxon para las variables dependientes y correlación para identificar asociaciones. Para todos los cálculos se asumió p <0,05. Resultados: No se observaron diferencias significativas frente a la variación de la frecuencia cardiaca (media y máxima), la tasa de sudoración y la densidad urinaria. A pesar de que no hubo diferencias significativas en la variación de la temperatura corporal en horno cuchara, si se observó una diferencia significativa en el horno eléctrico Conclusión: Aunque no se encontraron diferencias estadísticamente significativas en la mayoría de las variables, es un hecho que la exposición a temperaturas elevadas extremas tiene un impacto en el comportamiento fisiológico del organismo. Futuros estudios deben considerar la posibilidad de estandarizar protocolos que permitan la exposición térmica basada en el perfil particular de cada trabajador.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: la pérdida auditiva inducida por ruido es el efecto nocivo del ruido más comúnmente estudiado, sin embargo, el ruido también produce trastornos digestivos y del sueño, cambios en los niveles de cortisol, efectos cardiovasculares e hipertensión arterial (HTA), entre otros. Objetivo: determinar si la exposición laboral a ruido induce hipertensión arterial. Materiales y métodos: se siguieron las recomendaciones del método PRISMA para revisiones sistemáticas. Se hizo una búsqueda de estudios en PUBMED utilizando los términos “occupational and noise and hypertension” y aplicando los filtros: 1) publicaciones incluidas entre 2005-2015; 2) estudios publicados en inglés; 3) revisión de títulos y resúmenes; 4) revisión completa de los textos para un total final de 32 estudios. Se hizo la revisión, análisis y resumen de todos los estudios. Resultados: los estudios concluyeron que aquellos portadores de los polimorfismos de la enzima convertidora de angiotensina expuestos a ruido, tuvieron una mayor susceptibilidad genética a tener HTA. Los estudios reportaron una asociación positiva entre ruido e HTA. Hay controversia acerca de la relación que existe entre HTA, ruido y coexposición a otros factores como calor, trabajo por turnos, presencia de solventes o plomo en el lugar de trabajo y carga física. Conclusiones: Se presume que solo los niveles de ruido ≥ 85 dBA tienen efectos negativos sobre la salud, pero se ha encontrado que los efectos no auditivos del ruido se producen por debajo de este parámetro. Recomendaciones: se sugiere el uso de la pérdida auditiva inducida por ruido entre población trabajadora como un método de tamizaje para detectar personas prehipertensas, con el fin prevenir la generación de HTA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O calor, no ambiente onde o ser humano vive ou trabalha, atribui-se a: -fatores físicos: relação entre temperatura, radiação, umidade e movimento do ar; fatores humanos: o ser humano atua como fonte de energia através de seu metabolismo e atividade física. o calor caracterizado por um determinado meio ambiente é o resultado da atuação de diferentes variáveis, tais como: sistema de construção, situação geográfica do ambiente físico, climatização artificial, etc.; idade, sexo, capacidade física, estado de aclimatação, vestuário, tipo, carga e regime de trabalho, etc. A partir do momento em que o indivíduo for introduzido num determinado meio ambiente térmico, todos estes fatores vão influenciar a transmissão de calor entre ele e o ambiente. Na pretensão de haver equilíbrio térmico no meio ambiente quente, constata-se a necessidade de providenciar medidas de proteção a nível do sujeito e do ambiente, para que prevaleçam situações ambientais "confortáveis", ou pelo menos, "tolerantes". Desse modo, através da: definição das condições térmicas tolerantes e de conforto, parte-se para projetar meios ambientes de trabalho, que tornem praticáveis um isolamento térmico do calor exterior, assim como a perda de calor de dentro para fora. Atuando-se sobre variáveis individuais e ambientais estaremos incidindo diretamente sobre os meios de transmissão, procurando-se diminuir a quantidade de calor que o organismo produz e/ou recebe e aumentar a possibilidade de dissipá-lo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudou-se o empenamento, os níveis hormonais de Triiodotironina (T3) e Tiroxina (T4) e a temperatura corporal de frangos criados em diferentes temperaturas. Foram alojados 180 pintainhos Cobb 500 e 180 pintainhos ISA Label JA57, em temperaturas termoneutra, quente ou fria. O delineamento utilizado foi inteiramente ao acaso, em modelo fatorial 2 x 3 (2 linhagens e 3 temperaturas) com 8 repetições. Houve um aumento das concentrações de T3, nas aves criadas no frio, e uma redução no calor. Também no calor, os frangos ISA Label apresentaram níveis mais altos de T4. As aves Cobb apresentaram uma redução de T4 no calor ou no frio aos 42 dias e no calor aos 21 dias de idade. Houve menor empenamento aos 42 dias, quando os frangos foram criados em alta temperatura e um menor empenamento das aves ISA Label, quando comparadas aos frangos Cobb. As aves criadas no calor apresentaram maior temperatura corporal. Os frangos Cobb apresentaram um aumento na sua temperatura interna, quando criados em ambiente quente. Já os frangos da linhagem ISA Label mantiveram sua temperatura interna, independentemente da temperatura ambiente. É possível concluir que a temperatura ambiente afeta o empenamento dos frangos de corte de linhagens de rápido ganho de peso, que também apresentaram menor tolerância ao calor, demonstrada através de uma maior temperatura corporal e temperatura interna.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was conducted to evaluate the zootechnical parameters and age related changes in physiological responses of broiler chickens exposed to hot environment from early age onwards. The broiler chickens were exposed to high temperature (30 degreesC) at 15 d of age and maintained to Day 38 or maintained under thermoneutral environment (control).No significant decrease in feed consumption (FC) and body weight (BW) gain was observed in high temperature group after 7 d of exposure, but in the subsequent period, heat exposure lowered BW and FC, compared to control group. However, the weight gain was not significantly changed after 24 d of exposure, and the feed efficiency was not affected throughout the experimental period.The venous pCO(2) pressure was only significantly decreased by temperature after 24 d of heat exposure. The glucose, non-esterified fatty acid (NEFA), triglyceride (TG), glucose, lipid peroxidation (LPO), creatine kinase (CK), and corticosterone were not influenced by the temperature treatment. The significant decrease in uric acid and increase in lactate concentration due to high temperature were observed respectively at 28 and 35 d of age. The concentrations of triiodothyronine (T-3) and thyroxine (T-4) were changed oppositely at 28 d of age, as T-3 was decreased and T-4 was elevated by high temperature. However, the concentration of T-4 in plasma was decreased whereas T-3 was not changed at 38 d of age. The relationships between the blood parameters were changed due to the temperature treatment, suggesting that not only absolute values but also their interrelationships have to be considered when studying the effects of a particular treatment on physiological functioning.These results suggest the growth and physiological responses of broiler chickens, exposed to high temperature from early age onwards, differed at different stages of acclimation. The process of heat acclimation is related to the mode of heat exposure imposed and is not only reflected in the changes in the absolute concentrations, but also in the correlations among the blood indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Food intake and plasma thyroid hormone levels (T4 and T3) were higher in pigs acclimated to cold (12°) than hot (32°) environments. The exposure of cold pigs to hot ambient temperature decreased food intake and plasma T4 and T3, whereas for hot acclimated animals the change in ambient temperature (from 32 to 12° C) increased food intake and plasma thyroid hormone levels, but the new steady state level of food intake was reached only after 96 hr of temperature transfer despite the rapid change in plasma levels of thyroid hormones. Cold-acclimated pigs, when transferred to a hot environment after thyroidectomy, also reduced food intake, but hot pigs shifted to cold ambient temperature after thyroidectomy did not significantly increase food ingestion. The results of this experiment suggest that food intake adjustment depends on the previous living temperature and that thyroid hormones seem to play an important role in increasing the metabolically active mass that probably sustains the new steady state level of food intake, particularly in a cold environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine the variation of the temperature after shearing in sheep under dry and hot environment conditions and to compare the temperature changes with variation in cardiac and respiratory frequencies, ruminal movements and hydration status. Twenty Suffolk unshorn ewes were studied. Physical examination was performed in all animals three times a day at 7:00 AM, 1:00 PM and 7:00 PM, during 42 days (22 days before shearing and 20 days after shearing). The skin temperature was measured by infrared thermometer over several surfaces of the body. Data were submitted to analysis of variance, for comparisons between groups (shorn versus unshorn) at each time, and the significant difference was evaluated at level of P<0.05 by Tukey test. The respiratory frequency was statistically significant at all times. When air humidity was high, the respiratory frequencies were low. The thermal stress was clear in sheep of this study, reflecting marked changes in cardiac and respiratory frequencies and rectal temperature. The respiratory frequency was the parameter more reliable to establish a framework of thermal stress in the unshorn sheep, with values on average three times higher than those reported in the literature. The heart rate monitors the thermal variation of the environment and is also an indicator of heat stress. This variation shows the Suffolk breed is well adapted to hot climates. The correlation between the body surface temperatures with environment temperature and air humidity was negative, as explained by the effect of wool insulation, i.e. even with an increase in environment temperature and humidity, the body temperature tends to maintain a compensating balance. In the shorn animals, the correlation between skin temperature with environment temperature and air humidity showed that the skin temperature increases when the environment temperature increases. The increase in the environment temperature does not affect the body temperature of unshorn animals due the insulating effect of the wool. However, when environment temperature rises, the presence of the wool starts to affect the thermal comfort as the heat absorption is larger than the capacity of heat loss. In this study, the best thermal stress indicators were the respiratory frequency and rectal and skin temperatures. The temperatures of the skin measured at the perineum, axillae and inner thigh were considered the most reliable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work is to predict the temperature distribution of partially submersed umbilical cables under different operating and environmental conditions. The commercial code Fluent (R) was used to simulate the heat transfer and the air fluid flow of part of a vertical umbilical cable near the air-water interface. A free-convective three-dimensional turbulent flow in open-ended vertical annuli was solved. The influence of parameters such as the heat dissipating rate, wind velocity, air temperature and solar radiation was analyzed. The influence of the presence of a radiation shield consisting of a partially submersed cylindrical steel tube was also considered. The air flow and the buoyancy-driven convective heat transfer in the annular region between the steel tube and the umbilical cable were calculated using the standard k-epsilon turbulence model. The radiative heat transfer between the umbilical external surface and the radiation shield was calculated using the Discrete Ordinates model. The results indicate that the influence of a hot environment and intense solar radiation may affect the umbilical cable performance in its dry portion.