948 resultados para Hormonal Response Patterns
Resumo:
Well-established examples of genetic epistasis between a pair of loci typically show characteristic patterns of phenotypic distributions in joint genotype tables. However, inferring epistasis given such data is difficult due to the lack of power in commonly used approaches, which decompose the epistatic patterns into main plus interaction effects followed by testing the interaction term. Testing additive-only or all terms may have more power, but they are sensitive to nonepistatic patterns. Alternatively, the epistatic patterns of interest can be enumerated and the best matching one is found by searching through the possibilities. Although this approach requires multiple testing correction over possible patterns, each pattern can be fitted with a regression model with just one degree of freedom and thus the overall power can still be high, if the number of possible patterns is limited. Here we compare the power of the linear decomposition and pattern search methods, by applying them to simulated data generated under several patterns of joint genotype effects with simple biological interpretations. Interaction-only tests are the least powerful; while pattern search approach is the most powerful if the range of possibilities is restricted, but still includes the true pattern.
Resumo:
Secretion curves for prolactin, cortisol, TSH, and GH from a 37-year old woman with dysthymia and panic disorder with agoraphobia were determined one day prior to (day I), and during a panic attack (day II) associated with an oral dose of 60 mg dl-fenfluramine, a drug known to increase anticipatory anxiety. The increased cortisol secretion observed is discussed in relation to the hormonal correlates of anxiety and the possible role of depression, dl-fenfluramine, and serotonergic receptor sensitivity
Resumo:
Demand Side Response (DSR) has been slow to emerge in European electricity markets. This paper aims to both examine the reasons for low levels of DSR in Europe and reflect on factors that might affect the participation of DSR in capacity mechanisms. It relies on available evidence from the literature, secondary data on existing DSR programmes and energy aggregator's data from industries participating in DSR. Findings show that changes to the duration of contracted loads under existing or new programmes might increase the penetration of DSR. The introduction of capacity mechanisms may increase DSR from demand turn down if longer response times were available.
Resumo:
The aim of this study was to evaluate inflammatory response in chronic anovulating infertility women undergoing intracytoplasmic sperm injection. Thirteen infertile women with chronic anovulation and 23 normally ovulating women were prospectively evaluated. N-acetylglucosaminidase (NAG), myeloperoxidase (MPO), monocyte chemoattractant protein 1 (MCP-1), and C-reactive protein (CRP) concentrations were evaluated in serum and follicular fluid. Women with chronic anovulation presented higher NAG and MPO activity in follicular fluid when compared with normally ovulating women. Serum MPO activity was higher in the control group compared to the chronic anovulation group. Both serum and follicular fluid CRP concentrations were higher in women with chronic anovulation in comparison with the control group. Higher MCP-1 follicular fluid concentrations and serum levels of CRP were associated with the occurrence of ovarian hyperstimulation syndrome. Patients with chronic anovulation exhibited significantly higher follicle macrophage/neutrophil activation as well as unspecific inflammatory response by comparison with normally ovulating women.
Resumo:
The aim of this study was to verify, by means of functional methods, whether the circadian rhythm changes adrenergic response patterns in the epididymal half of the vas deferens isolated from control rats as well as from rats submitted to acute stress. The experiments were performed at 9:00 a.m., 3:00 p.m., 9:00 p.m., and 3:00 a.m. The results showed a light-dark dependent variation of the adrenergic response pattern on organs isolated from control as well as from stressed rats. In the control group, only the phenylephrine sensitivity was changed throughout the circadian rhythm. Under the stress condition, both norepinephrine and phenylephrine response patterns were changed, mainly during darkness. The maximal contractile response to both alpha- and beta-agonist and alpha(1)-agonist was increased in the dark phase, corresponding to high plasmatic concentrations of endogenous melatonin. The vas deferens isolated from stressed rats during the light phase simultaneously incubated with exogenous melatonin showed the same pattern of response obtained in the dark phase, thus indicating a peripheric action of melatonin on this organ. Therefore, the circadian rhythms are important to the adrenergic response pattern in rat vas deferens from both control and stressed rats. In conclusion, we suggest a melatonin modulation on alpha(1)-postsynaptic adrenergic response in the rat vas deferens. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The tonotopic organization of the mammalian cochlea is accompanied by structural gradients which include the somatic lengths of outer hair cells (OHCs). These receptors rest upon the vibrating portion of the basilar membrane and have been reported to exhibit motile responses following chemical and electrical stimulation. These movements were examined in detail in this dissertation. It was found that isolated OHCs cultured in vitro respond to chemical depolarization with slow tonic movements, and to electrical waveforms with bi-directional, frequency following movements extending from DC to at least 10 kHz.^ Slow contractions were also elicited following electrical stimulation, bath incubation in carbachol (a cholinergic agonist), and increases in extracellular K+ concentration as little as 50 mM.^ Isolated OHCs display anatomical features which are remarkable when contrasted with those prepared from intact receptor organs. A complex structure located between the cuticular plate and the nuclear membrane was consistently observed and was examined by serial cross-sections which revealed a network of non-membrane bound densities. This corresponded to a granular complex seen at the light microscope level. The complex was composed of dense regions of organelles, striated structures embedded within the core, and a circumferential network of microtubules residing in the peri-nuclear portion of the cell. In cells which had lost their nuclear attachment to the terminal synaptic body, the granular complex could be made to contract without effecting any change in cellular length, implying that the complex may be the driving force behind certain aspects of the motile response.^ Most cells displayed movements which revealed asymmetries analogous to those reported for OHC receptor potentials in vivo. The contraction phase (for longer cells) was shown to have a small time constant (approximately 400 microseconds) and saturated with limited displacements. The expansion phase had time constants as large as 1.3 milliseconds but yielded displacements as much as 60 percent larger than those seen for contractions.^ Additional waveform characteristics seen in the in vivo response could be emulated either by biasing the cell's resting length with either direct current, triggering contractions via large electrical displacements, or incubation with depolarizing compounds.^ Alternatively, short (20-30 um) cells revealed more linear response characteristics to the probe stimulus. Partial saturation was achieved and revealed a DC component which was opposite in polarity to that seen in longer cells. (Abstract shortened with permission of author.) ^
Resumo:
Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. It is a largely unresolved question to what degree current temperate grassland communities already reflect a decline of regional processes such as longer distance seed dispersal. Answering this question is challenging since it requires both a mechanistic approach to community dynamics and a sufficient data basis that allows identifying general patterns. Here, we present results of a local individual- and trait-based community model that was initialized with plant functional types (PFTs) derived from an extensive empirical data set of species-rich grasslands within the `Biodiversity Exploratories' in Germany. Driving model processes included above- and belowground competition, dynamic resource allocation to shoots and roots, clonal growth, grazing, and local seed dispersal. To test for the impact of regional processes we also simulated seed input from a regional species pool. Model output, with and without regional seed input, was compared with empirical community response patterns along a grazing gradient. Simulated response patterns of changes in PFT richness, Shannon diversity, and biomass production matched observed grazing response patterns surprisingly well if only local processes were considered. Already low levels of additional regional seed input led to stronger deviations from empirical community pattern. While these findings cannot rule out that regional processes other than those considered in the modeling study potentially play a role in shaping the local grassland communities, our comparison indicates that European grasslands are largely isolated, i.e. local mechanisms explain observed community patterns to a large extent.
Resumo:
AIMS/HYPOTHESIS To investigate exercise-related fuel metabolism in intermittent high-intensity (IHE) and continuous moderate intensity (CONT) exercise in individuals with type 1 diabetes mellitus. METHODS In a prospective randomised open-label cross-over trial twelve male individuals with well-controlled type 1 diabetes underwent a 90 min iso-energetic cycling session at 50% maximal oxygen consumption ([Formula: see text]), with (IHE) or without (CONT) interspersed 10 s sprints every 10 min without insulin adaptation. Euglycaemia was maintained using oral (13)C-labelled glucose. (13)C Magnetic resonance spectroscopy (MRS) served to quantify hepatocellular and intramyocellular glycogen. Measurements of glucose kinetics (stable isotopes), hormones and metabolites complemented the investigation. RESULTS Glucose and insulin levels were comparable between interventions. Exogenous glucose requirements during the last 30 min of exercise were significantly lower in IHE (p = 0.02). Hepatic glucose output did not differ significantly between interventions, but glucose disposal was significantly lower in IHE (p < 0.05). There was no significant difference in glycogen consumption. Growth hormone, catecholamine and lactate levels were significantly higher in IHE (p < 0.05). CONCLUSIONS/INTERPRETATION IHE in individuals with type 1 diabetes without insulin adaptation reduced exogenous glucose requirements compared with CONT. The difference was not related to increased hepatic glucose output, nor to enhanced muscle glycogen utilisation, but to decreased glucose uptake. The lower glucose disposal in IHE implies a shift towards consumption of alternative substrates. These findings indicate a high flexibility of exercise-related fuel metabolism in type 1 diabetes, and point towards a novel and potentially beneficial role of IHE in these individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT02068638 FUNDING: Swiss National Science Foundation (grant number 320030_149321/) and R&A Scherbarth Foundation (Switzerland).
Resumo:
The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.
Resumo:
Resistance training has been shown to reliably and substantially enhance muscle function in older adults and these improvements can be accompanied by improved functional performance. Training variables should be manipulated to enhance muscle strength and minimize injury risks in this population.
Resumo:
P>Achalasia surgical treatment alters the esophagogastric junction anatomy (cardiomyotomy plus fundoplication or esophagectomy and gastric pull-up), thus favoring a certain degree of gastroesophageal reflux. Gastric secretory and hormonal functioning is not completely known in chagasic patients. The aim of this study was to evaluate the gastric secretory and hormonal response in patients with end-stage chagasic achalasia compared with normal subjects. Gastric secretion and hormonal response were assessed by estimation of gastric acid secretion (GAS) in basal condition and after pentagastrin stimulation, basal serum gastrin, and serum pepsinogen (SP) in basal condition and after betazole hydrochloride (Histalog (R); Eli Lilly and Company, Indianapolis, IN, USA) stimulation in 27 patients with chagasic achalasia. The results were then compared with those of 24 normal subjects. In the chagasic group, the mean basal and stimulated GAS were significantly lower than in the control group (basal: 1.277 vs. 3.13, P = 0.002; stimulated: 15.9 vs. 35.8, P = 0.0001). Chagasic patients` SG levels showed a significantly higher basal value than the control group (83.3 vs. 36.8, P = 0.0001). There was a significant increase of SP after stimulation compared with the basal levels in both chagasic and control groups. Although the chagasic patients` SP values were higher than the controls, this difference was not statistically significant, either in basal and stimulated conditions (basal: 122.0 vs. 108.9, stimulated 120 min: 177.1 vs. 158.9). In patients with chronic Chagas` disease (ChD), although autonomic denervation does not suppress the strength of the gastric mucosal cells` secretory response to stimulation, it reduces GAS (parietal cell) without, however, affecting SP production (chief cells). On the other hand, the gastrin-producing cells have continuously been stimulated by low GAS.
Resumo:
Purpose: To identify patterns of initially pain freedom response in patients with classical trigeminal neuralgia (CTN) with Gamma Knife surgery (GKS) and to compare their associated hypoesthesia and recurrence rates. Methods: In this study we analysed only 497 patients treated between July 1992 and November 2010, with a follow-up longer than 1 year, after excluding megadolichobasilar artery and multiple sclerosis related trigeminal neuralgia, as well as the second GKS treatments so as to have only cases with CTN and single radiosurgical treatment. GKS using a Gamma Knife (model B or C or Perfexion) was performed, based on both MRI and computer tomography (CT) targeting. A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.8 mm (range 4.5-14) anteriorly to the emergence of the nerve. A median maximum dose of 85 Gy (range 70-90) was delivered. After empiric methods but also by using a chart with clear cut-off periods of pain free distribution, we were able to divide the initially pain free patients into 3 separate groups: within the first 48 hours, after 48 hours till 30 days and after 30 days, respectively. Results: The median follow- up period was 43.75 months (range 12-174.41). Four hundred and fifty-four patients (91.75%) were initially pain free in a median time of 10 days (range 1-459): 169 (37.2%) became pain free within the first 48 hours (pf<=48 h), compared to 194 (42.8%) between the 3-rd day and the day 30 (pf (>48 h, <=30 d)), inclusively and 91 (20%) patients after 30 days (pf>30d). Differences in terms of postoperative hypoesthesia were found with a p value of 0.014 as follows: the group pf<=48 h had 18 (13.7%) compared to pf (>48 h, <=30 d) with 30 (19%) and pf>30d with 22 (30.5%) patients developing a postoperative GKS hypoesthesia. One hundred and fifty seven (34.4%) patients initially pain free experienced a recurrence with a median delay of 24 months (range 0.62-150.06). There were no statistically significant differences between the three groups concerning recurrence (p value of 0.515). Conclusions: An important number of patients (169 cases, 37.2%) became pain free in the first 48 hours. Hypoesthesia rate was higher within the group becoming pain free after 30 days with a statistically significant difference between the three populations (p= 0.014). Further analysis will eventually help to elucidate the differences observed among groups.
Resumo:
Objectives: To evaluate the effects of Metformin and Glyburide on cardiovascular, metabolic and hormonal parameters during progressive exercise performed to exhaustion in the post-prandial state in women with type 2 diabetes (T2DM). Design and Methods: Ten T2DM patients treated with Metformin (M group), 10 with Glyburide (G group) and 10 age-paired healthy subjects exercised on a bicycle ergometer up to exercise peak. Cardiovascular and blood metabolic and hormonal parameters were measured at times -60 min, 0 min, exercise end, and at 10 and 20 minutes of recovery phase. Thirty minutes before the exercise, a standard breakfast was provided to all participants. The diabetic patients took Metformin or Glyburide before or with meal. Results: Peak oxygen uptake (VO2) was lower in patients with diabetes. Plasma glucose levels remained unchanged, but were higher in both diabetic groups. Patients with diabetes also presented lower insulin levels after meals and higher glucagon levels at exercise peak than C group. Serum cortisol levels were higher in G than M group at exercise end and recovery phase. Lactate levels were higher in M than G group at fasting and in C group at exercise peak. Nor epinephrine, GH and FFA responses were similar in all 3 groups. Conclusion: Progressive exercise performed to exhaustion, in the post-prandial state did not worsen glucose control during and after exercise. The administration of the usual dose of Glyburide or Metformin to T2DM patients did not influence the cardiovascular, metabolic and hormonal response to exercise.
Resumo:
Summary. Genetic polymorphisms near IL28B are associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV). Our objective was to assess the predictive value of IL28B polymorphisms in the treatment of chronic hepatitis C of patients with HCV genotypes 4, for which data are currently limited. We analysed the association of IL28B polymorphisms with the virological response to treatment among 182 naïve chronic hepatitis C patients with HCV genotype 4, all from Syria. Associations of alleles with the response patterns were evaluated by univariate analysis and multivariate logistic regression, accounting for all relevant covariates. Sustained virological response (SVR) was achieved in 26% of rs8099917 TG/GG carriers compared with 60% of TT carriers (P < 0.0001) and 35% of rs12979860 CT/TT carriers compared with 62% of CC carriers (P = 0.0011). By multivariate analysis, the association between rs8099917 and SVR remained significant (OR = 0.19, 95% CI 0.07-0.50, for TG/GG vs TT, P = 0.0007), with the only significant covariate being advanced fibrosis (OR = 0.13, 95% CI 0.04-0.37, P = 0.0002). In conclusion, IL28B polymorphisms are the strongest predictors of response to therapy among chronic hepatitis C patients with HCV genotype 4.
Resumo:
Jasmonates (JAs) and spermidine (Sd) influence fruit (and seed) development and ripening. In order to unravel their effects in peach fruit, at molecular level, field applications of methyl jasmonate (MJ) and propyl dihydrojasmonate (PDJ), and Sd were performed at an early developmental stage (late S1). At commercial harvest, JA-treated fruit were less ripe than controls. Realtime RT-PCR analyses confirmed a down-regulation of ethylene biosynthetic, perception and signaling genes, and flesh softening-related genes. The expression of cell wall-related genes, of a sugar-transporter and hormone-related transcript levels was also affected by JAs. Seeds from JA-treated fruit showed a shift in the expression of developmental marker genes suggesting that the developmental program was probably slowed down, in agreement with the contention that JAs divert resources from growth to defense. JAs also affected phenolic content and biosynthetic gene expression in the mesocarp. Levels of hydroxycinnamic acids, as well as those of flavan-3-ols, were enhanced, mainly by MJ, in S2. Transcript levels of phenylpropanoid pathway genes were up-regulated by MJ, in agreement with phenolic content. Sd-treated fruits at harvest showed reduced ethylene production and flesh softening. Sd induced a short-term and long-term response patterns in endogenous polyamines. At ripening the up-regulation of the ethylene biosynthetic genes was dramatically counteracted by Sd, leading to a down-regulation of softening-related genes. Hormone-related gene expression was also altered both in the short- and long-term. Gene expression analyses suggest that Sd interfered with fruit development/ripening by interacting with multiple hormonal pathways and that fruit developmental marker gene expression was shifted ahead in accord with a developmental slowing down. 24-Epibrassinolide was applied to Flaminia peaches under field conditions early (S1) or later (S3) during development. Preliminary results showed that, at harvest, treated fruit tended to be larger and less mature though quality parameters did not change relative to controls.