325 resultados para Hopf hypersurfaces
Resumo:
In this work we investigate several important aspects of the structure theory of the recently introduced quasi-Hopf superalgebras (QHSAs), which play a fundamental role in knot theory and integrable systems. In particular we introduce the opposite structure and prove in detail (for the graded case) Drinfeld's result that the coproduct Delta ' =_ (S circle times S) (.) T (.) Delta (.) S-1 induced on a QHSA is obtained from the coproduct Delta by twisting. The corresponding "Drinfeld twist" F-D is explicitly constructed, as well as its inverse, and we investigate the complete QHSA associated with Delta '. We give a universal proof that the coassociator Phi ' = (S circle times S circle times S) Phi (321) and canonical elements alpha ' = S(beta), beta ' = S(alpha) correspond to twisting, the original coassociator Phi = Phi (123) and canonical elements alpha, beta with the Drinfeld twist F-D. Moreover in the quasi-tri angular case, it is shown algebraically that the R-matrix R ' = (S circle times S)R corresponds to twisting the original R-matrix R with F-D. This has important consequences in knot theory, which will be investigated elsewhere.
Resumo:
By generalizing the Reshetikhin and Semenov-Tian-Shansky construction to supersymmetric cases, we obtain the Drinfeld current realization for the quantum affine superalgebra U-q[gl(m\n)((1))]. We find a simple coproduct for the quantum current generators and establish the Hopf algebra structure of this super current algebra.
Resumo:
The paper studies existence, uniqueness, and stability of large-amplitude periodic cycles arising in Hopf bifurcation at infinity of autonomous control systems with bounded nonlinear feedback. We consider systems with functional nonlinearities of Landesman-Lazer type and a class of systems with hysteresis nonlinearities. The method is based on the technique of parameter functionalization and methods of monotone concave and convex operators. (C) 2001 Academic Press.
Resumo:
We consider a delay differential equation with two delays. The Hopf bifurcation of this equation is investigated together with the stability of the bifurcated periodic solution, its period and the bifurcation direction. Finally, three applications are given.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
L’objectif à moyen terme de ce travail est d’explorer quelques formulations des problèmes d’identification de forme et de reconnaissance de surface à partir de mesures ponctuelles. Ces problèmes ont plusieurs applications importantes dans les domaines de l’imagerie médicale, de la biométrie, de la sécurité des accès automatiques et dans l’identification de structures cohérentes lagrangiennes en mécanique des fluides. Par exemple, le problème d’identification des différentes caractéristiques de la main droite ou du visage d’une population à l’autre ou le suivi d’une chirurgie à partir des données générées par un numériseur. L’objectif de ce mémoire est de préparer le terrain en passant en revue les différents outils mathématiques disponibles pour appréhender la géométrie comme variable d’optimisation ou d’identification. Pour l’identification des surfaces, on explore l’utilisation de fonctions distance ou distance orientée, et d’ensembles de niveau comme chez S. Osher et R. Fedkiw ; pour la comparaison de surfaces, on présente les constructions des métriques de Courant par A. M. Micheletti en 1972 et le point de vue de R. Azencott et A. Trouvé en 1995 qui consistent à générer des déformations d’une surface de référence via une famille de difféomorphismes. L’accent est mis sur les fondations mathématiques sous-jacentes que l’on a essayé de clarifier lorsque nécessaire, et, le cas échéant, sur l’exploration d’autres avenues.
Resumo:
In this thesis we have presented some aspects of the nonlinear dynamics of Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control and delay induced multistability.We have chosen diode pumped Nd:YAG laser with intracavity KTP crystal operating with two mode and three mode output as our model system.Different types of orientation for the laser cavity modes were considered to carry out the studies. For laser operating with two mode output we have chosen the modes as having parallel polarization and perpendicular polarization. For laser having three mode output, we have chosen them as two modes polarized parallel to each other while the third mode polarized orthogonal to them.
Resumo:
Dynamics of Nd:YAG laser with intracavity KTP crystal operating in two parallel polarized modes is investigated analytically and numerically. System equilibrium points were found out and the stability of each of them was checked using Routh–Hurwitz criteria and also by calculating the eigen values of the Jacobian. It is found that the system possesses three equilibrium points for (Ij, Gj), where j = 1, 2. One of these equilibrium points undergoes Hopf bifurcation in output dynamics as the control parameter is increased. The other two remain unstable throughout the entire region of the parameter space. Our numerical analysis of the Hopf bifurcation phenomena is found to be in good agreement with the analytical results. Nature of energy transfer between the two modes is also studied numerically.
Resumo:
We report the experimental observation of subcritical Hopf bifurcation and the existence of non-oscillating “windows” in the dynamics of a Ne-Nd hollow cathode discharge current as the control parameter.
Resumo:
For a Lévy process ξ=(ξt)t≥0 drifting to −∞, we define the so-called exponential functional as follows: Formula Under mild conditions on ξ, we show that the following factorization of exponential functionals: Formula holds, where × stands for the product of independent random variables, H− is the descending ladder height process of ξ and Y is a spectrally positive Lévy process with a negative mean constructed from its ascending ladder height process. As a by-product, we generate an integral or power series representation for the law of Iξ for a large class of Lévy processes with two-sided jumps and also derive some new distributional properties. The proof of our main result relies on a fine Markovian study of a class of generalized Ornstein–Uhlenbeck processes, which is itself of independent interest. We use and refine an alternative approach of studying the stationary measure of a Markov process which avoids some technicalities and difficulties that appear in the classical method of employing the generator of the dual Markov process.
Resumo:
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u equivalent to 1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper pursues the study carried out in [ 10], focusing on the codimension one Hopf bifurcations in the hexagonal Watt governor system. Here are studied Hopf bifurcations of codimensions two, three and four and the pertinent Lyapunov stability coefficients and bifurcation diagrams. This allows to determine the number, types and positions of bifurcating small amplitude periodic orbits. As a consequence it is found an open region in the parameter space where two attracting periodic orbits coexist with an attracting equilibrium point.
Resumo:
In this paper we study the Lyapunov stability and the Hopf bifurcation in a system coupling an hexagonal centrifugal governor with a steam engine. Here are given sufficient conditions for the stability of the equilibrium state and of the bifurcating periodic orbit. These conditions are expressed in terms of the physical parameters of the system, and hold for parameters outside a variety of codimension two. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.