Hopf Bifurcations in a Watt Governor with a Spring


Autoria(s): SOTOMAYOR, Jorge; MELLO, Luis Fernando; BRAGA, Denis de Carvalho
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

This paper pursues the study carried out in [ 10], focusing on the codimension one Hopf bifurcations in the hexagonal Watt governor system. Here are studied Hopf bifurcations of codimensions two, three and four and the pertinent Lyapunov stability coefficients and bifurcation diagrams. This allows to determine the number, types and positions of bifurcating small amplitude periodic orbits. As a consequence it is found an open region in the parameter space where two attracting periodic orbits coexist with an attracting equilibrium point.

Identificador

JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, v.15, p.288-299, 2008

1402-9251

http://producao.usp.br/handle/BDPI/30566

10.2991/jnmp.2008.15.s3.28

http://dx.doi.org/10.2991/jnmp.2008.15.s3.28

Idioma(s)

eng

Publicador

ATLANTIS PRESS

Relação

Journal of Nonlinear Mathematical Physics

Direitos

restrictedAccess

Copyright ATLANTIS PRESS

Palavras-Chave #Physics, Mathematical
Tipo

article

original article

publishedVersion