970 resultados para Homogeneous fluids


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rheology has the purpose to study the flux and deformation of materials when submitted to some tension or outer mechanical solicitation. In practice, the effective scientific field broached by rheology is restricted only to the study of homogeneous fluids behavior, in which are included eminent liquids, particles suspensions, and emulsions. The viscosity (η) and the yield stress (τ 0) are the two basic values that define the fluids' behavior. The first one is the proportionality constant that relates the shear rate (γ) with the shear stress (τ) applied, while the second indicates the minimal tension for the flowage beginning. The fluids that obey the Newton's relation - Newtonians fluids - display the constant viscosity and the null yield stress. It's the case of diluted suspensions and grate amount of the pure liquids (water, acetone, alcohol, etc.) in which the viscosity is an intrinsic characteristic that depends on temperature and, in a less significant way, pressure. The suspension, titled Cement Paste, is defined as being a mixture of water and cement with, or without, a superplasticizer additive. The cement paste has a non-Newtonian fluid behavior (pseudoplastic), showing a viscosity that varies in accord to the applied shear stress and significant deformations are obtained from a delimited yield stress. In some cases, systems can also manifest the influence of chemical additives used to modify the interactions fluid/particles, besides the introduced modifications by the presence of incorporated air. To the cement paste the rheometric rehearsals were made using the rheometer R/S Brookfield that controls shear stress and shear rate in accord to the rheological model of Herschel-Bulkley that seems to better adapt to this kind of suspension's behavior. This paper shows the results of rheometrical rehearsals on the cement paste that were produced with cements HOLCIM MC-20 RS and CPV-ARI RS with the addition of superplasticizer additives based of napthaline and polycarboxilate, with and without a constant agitation of the mixture. The obtainment of dosages of superplasticizer additives, as well as the water/cement ratio, at the cement at the fluidify rate determination, was done in a total of 12 different mixtures. It's observed that the rheological parameters seem to vary according to the cement type, the superplasticizer type, and the methodology applied at the fluidity rate determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A closed form solution is presented for determining the shape and location of the interface between two dissimilar fluids (having different densities) when steady flow takes place through a homogeneous and isotropic porous medium, into a sheetpile cofferdam; the interface is assumed to be sharp and the lower fluid stationary. The solution is obtained using the inverse hodograph. Numerical results are presented in nondimensional form for various parametric conditions in the physical plane; the interface pattern, as also the seepage discharge and exit gradient distribution are shown. The critical conditions of the interface are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments and computer simulation studies have revealed existence of rich dynamics in the orientational relaxation of molecules in confined systems such as water in reverse micelles, cyclodextrin cavities, and nanotubes. Here we introduce a novel finite length one dimensional Ising model to investigate the propagation and the annihilation of dynamical correlations in finite systems and to understand the intriguing shortening of the orientational relaxation time that has been reported for small sized reverse micelles. In our finite sized model, the two spins at the two end cells are oriented in the opposite directions to mimic the effects of surface that in real system fixes water orientation in the opposite directions. This produces opposite polarizations to propagate inside from the surface and to produce bulklike condition at the center. This model can be solved analytically for short chains. For long chains, we solve the model numerically with Glauber spin flip dynamics (and also with Metropolis single-spin flip Monte Carlo algorithm). We show that model nicely reproduces many of the features observed in experiments. Due to the destructive interference among correlations that propagate from the surface to the core, one of the rotational relaxation time components decays faster than the bulk. In general, the relaxation of spins is nonexponential due to the interplay between various interactions. In the limit of strong coupling between the spins or in the limit of low temperature, the nature of relaxation of the spins undergoes a qualitative change with the emergence of a homogeneous dynamics where decay is predominantly exponential, again in agreement with experiments. (C) 2010 American Institute of Physics. doi: 10.1063/1.3474948]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that the vorticity or the expansion vanishes for any shear-free perfect fluid solution of the Einstein field equations where the pressure satisfies a barotropic equation of state and the spatial divergence of the electric part of the Weyl tensor is zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aetiological agent of chronic hepatitis C is the hepatitis C virus. The hepatitis C virus is spread by parenteral transmission of body fluids, primarily blood or blood products. In 1989, after more than a decade of research, HCV was isolated and characterised. The hepatitis C viral genome is a positive-sense, single-stranded RNA molecule approximately 9.4 kb in length, which encodes a polyprotein of about 3100 amino acids. There are 6 main genotypes of HCV, each further stratified by subtype. In 1994, a cohort of women was identified in Ireland as having been iatrogenically exposed to the hepatitis C virus. The women were all young and exposed as a consequence of the receipt of HCV 1b contaminated anti-D immunoglobulin. The source of the infection was identified as an acutely infected female. As part of a voluntary serological screening programme involving 62,667 people, 704 individuals were identified as seropositive for exposure to the hepatitis C virus; 55.4% were found to be positive for the viral genome 17 years after exposure. Of these women 98% had evidence of inflammation, but suprisingly, a remarkable 49% showed no evidence of fibrosis. Clinicopathology and virological analysis has identified associations between viral load and the histological activity index for inflammation, and, between inflammation and levels of the liver enzyme alanine aminotransferase. Infection at a younger age appears to protect individuals from progression to advanced liver disease. Molecular analyses of host immunogenetic elements shows that particular class II human leukocyte associated antigen alleles are associated with clearance of the hepatitis C virus. Additional class II alleles have been identified that are associated with stable viraemia over an extended period of patient follow-up. Although, investigation of large untreated homogeneous cohorts is likely to become more difficult, as the efficacy of anti-viral therapy improves, further investigation of host and viral factors that influence disease progression will help provide an evidence based approach were realistic expectations regarding patient prognosis can be ascertained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a ‘velocity’ that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistically stationary and homogeneous shear turbulence (SS-HST) is investigated by means of a new direct numerical simulation code, spectral in the two horizontal directions and compact-finite-differences in the direction of the shear. No remeshing is used to impose the shear-periodic boundary condition. The influence of the geometry of the computational box is explored. Since HST has no characteristic outer length scale and tends to fill the computational domain, long-term simulations of HST are “minimal” in the sense of containing on average only a few large-scale structures. It is found that the main limit is the spanwise box width, Lz, which sets the length and velocity scales of the turbulence, and that the two other box dimensions should be sufficiently large (Lx ≳ 2Lz, Ly ≳ Lz) to prevent other directions to be constrained as well. It is also found that very long boxes, Lx ≳ 2Ly, couple with the passing period of the shear-periodic boundary condition, and develop strong unphysical linearized bursts. Within those limits, the flow shows interesting similarities and differences with other shear flows, and in particular with the logarithmic layer of wall-bounded turbulence. They are explored in some detail. They include a self-sustaining process for large-scale streaks and quasi-periodic bursting. The bursting time scale is approximately universal, ∼20S−1, and the availability of two different bursting systems allows the growth of the bursts to be related with some confidence to the shearing of initially isotropic turbulence. It is concluded that SS-HST, conducted within the proper computational parameters, is a very promising system to study shear turbulence in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Studies amongst older people with acute dysphagic stroke requiring thickened fluids have assessed fluid intakes from combinations of beverage, food, enteral and parenteral sources, but not all sources simultaneously. The study aimed to comprehensively assess total water intake from food, beverages, enteral and parenteral sources amongst dysphagic adult in-patients receiving thickened fluids. Methods Patients requiring thickened fluid following dysphagia diagnosis were recruited consecutively from a tertiary teaching hospital’s medical and neurosurgical wards. Fluid intake from food and beverages was assessed by wastage, direct observation and quantified from enteral and parenteral sources through clinical medical records. Results No patients achieved their calculated fluid requirements unless enteral or parenteral fluids were received. The mean daily fluid intake from food was greater than from beverages whether receiving diet alone (food 807±363mL, food and beverages 370±179mL, p<0.001) or diet with enteral or parenteral fluid support (food 455±408mL, food and beverages 263±232mL, p<0.001). Greater daily fluid intakes occurred when receiving enteral and parenteral fluid in addition to oral dietary intake, irrespective of age group, whether assistance was required, diagnosis and whether stage 3 or stage 2 thickened fluids were required (p<0.05). After enteral and parenteral sources, food provided the most important contribution to daily fluid intakes. Conclusions The greatest contribution to oral fluid intake was from food, not beverages. Designing menus and food services which promote and encourage the enjoyment of fluid dense foods, in contrast to thickened beverages, may present an important way to improve fluid intakes of those with dysphagia. Supplemental enteral or parenteral fluid may be necessary to achieve minimum calculated fluid requirements.