932 resultados para Holographic images
Resumo:
The article describes a new method for obtaining a holographic image of desired magnification, consistent with the stipulated criteria for its resolution and aberrations.
Resumo:
A holographic rendering algorithm using a layer-based structure with angular tiling supports view-dependent shading and accommodation cues. This approach also has the advantages of rapid computation speed and visual reduction of layer gap artefacts compared to other approaches. Holograms rendered with this algorithm are displayed using an SLM to demonstrate view-dependent shading and occlusion. © 2013 SPIE-IS&T.
Resumo:
An exact multiple-scattering formalism is used to simulate a wave multiply scattered from a cluster, and this is used to provide a direct quantitative analysis of the influence of multiple scattering on holographic imaging. Although multiple scattering may help in identifying atomic positions in real space, we show that it does cause a loss of resolution. We also show that a filter function can considerably reduce the multiple-scattering contribution to holographic images.
Resumo:
BARTON 1 has suggested that photoelectron interference patterns may be used directly as holograms to obtain atomic-resolution images of surface structures. Bulk structures have been obtained previously by this means from experimental patterns of high-energy Kikuchi(quasi-elastically scattered) and Auger electrons 2,3. Here we test the feasibility of this technique for determination of surface structures using Auger intensity patterns obtained 4,5 from iodine chemisorbed on a pseudomorphic silver monolayer on Pt{111}. By direct numerical holographic inversion, we obtain three-dimensional images which show that iodine adatoms are located in hollows of 3-fold symmetry on the surface. The images yield the site symmetry with good atomic resolution in the surface plane, but suffer from poor resolution along the Ag-I axis. We anticipate that data with better angular resolution obtained at low temperatures would improve the spatial resolution of such images.
Resumo:
A novel method for surface profilometry by holography is presented. We used a diode laser emitting at many wavelengths simultaneously as the light source and a Bi12TiO20 (BTO) crystal as the holographic medium in single exposure processes. The employ of multi-wavelength, large free spectral range (FSR) lasers leads to holographic images covered of interference fringes corresponding to the contour lines of the studied surface. In order to obtain the relief of the studied surface, the fringe analysis was performed by the phase stepping technique (PST) and the phase unwrapping was carried out by the Cellular-automata method. We analysed the relief of a tilted flat metallic bar and a tooth prosthesis.
Resumo:
The application of multi-wavelength holography for surface shape measurement is presented. In our holographic setup a Bi12TiO 20 (BTO) photorefractive crystal was the holographic recording medium and a multimode diode laser emitting in the red region was the light source in a two-wave mixing scheme. The holographic imaging with multimode lasers results in multiple holograms in the BTO. By employing such lasers the resulting holographic image appears covered of interference fringes corresponding to the object relief and the interferogram spatial frequency is proportional to the diode laser free spectral range (FSR). We used a Fabry-Perot étalon at the laser output for laser mode selection. Thus, larger effective values of the laser FSR were achieved, leading to higher-spatial frequency interferograms and therefore to more sensitive and accurate measurements. The quantitative evaluation of the interferograms was performed through the phase stepping technique (PST) and the phase map unwrapping was carried out through the Cellular-Automata method. For a given surface, shape measurements with different interferogram spatial frequencies were performed and compared, concerning measurement noise and visual inspection.
Resumo:
This paper describes the application of lensless in-line digital holographic microscopy (DHM) to carry out thermo-mechanical characterization of microheaters fabricated through PolyMUMPs three-layer polysilicon surface micromachining process and subjected to a high thermal load. The mechanical deformation of the microheaters on the electrothermal excitation due to thermal stress is analyzed. The numerically reconstructed holographic images of the microheaters clearly indicate the regions under high stress. A double-exposure method has been used to obtain the quantitative measurements of the deformations, from the phase analysis of the hologram fringes. The measured deformations correlate well with the theoretical values predicted by a thermo-mechanical analytical model. The results show that lensless in-line DHM with Fourier analysis is an effective method for evaluating the thermo-mechanical characteristics of MEMS components.
Resumo:
A very fast method, cluster low-energy electron diffraction (LEED) is proposed for LEED I-V spectral analysis, in which three appproximations are introduced: the small-atom approximation, omission of the structure factors, and truncation of higher order ( > 2) scattering events. The method has been tested using a total of four sets of I-V spectra calculated by fully dynamic LEED for (i) the simple overlayer system, O on Ni{100}, and (ii) the reconstructed system, Cu on W{100}, and also one set of experimental data from W{100}-c(2 X 2)-Cu. In each case the correct structural parameters are recovered. It is suggested that for complex systems cluster LEED provides an efficient fast route to trial structures, which could be refined by automated tenser LEED.
Resumo:
LOW-ENERGY electron diffraction (LEED) has become the most successful technique in surface crystallography1, but because of the complexity of the surface-electron scattering interactions, analyses of LEED data are still conducted on a trial-and-error basis: a direct-inversion method for treating LEED intensity data remains an attractive goal2. Building on recent theoretical and experimental developments in electron holography from surface structures3-16, we show here that three-dimensional images with atomic resolution can be obtained by a direct transform of conventional LEED intensity spectra.
Resumo:
Information display technology is a rapidly growing research and development field. Using state-of-the-art technology, optical resolution can be increased dramatically by organic light-emitting diode - since the light emitting layer is very thin, under 100nm. The main question is what pixel size is achievable technologically? The next generation of display will considers three-dimensional image display. In 2D , one is considering vertical and horizontal resolutions. In 3D or holographic images, there is another dimension – depth. The major requirement is the high resolution horizontal dimension in order to sustain the third dimension using special lenticular glass or barrier masks, separate views for each eye. The high-resolution 3D display offers hundreds of more different views of objects or landscape. OLEDs have potential to be a key technology for information displays in the future. The display technology presented in this work promises to bring into use bright colour 3D flat panel displays in a unique way. Unlike the conventional TFT matrix, OLED displays have constant brightness and colour, independent from the viewing angle i.e. the observer's position in front of the screen. A sandwich (just 0.1 micron thick) of organic thin films between two conductors makes an OLE Display device. These special materials are named electroluminescent organic semi-conductors (or organic photoconductors (OPC )). When electrical current is applied, a bright light is emitted (electrophosphorescence) from the formed Organic Light-Emitting Diode. Usually for OLED an ITO layer is used as a transparent electrode. Such types of displays were the first for volume manufacture and only a few products are available in the market at present. The key challenges that OLED technology faces in the application areas are: producing high-quality white light achieving low manufacturing costs increasing efficiency and lifetime at high brightness. Looking towards the future, by combining OLED with specially constructed surface lenses and proper image management software it will be possible to achieve 3D images.
Resumo:
We studied the shape measurement of semiconductor components by holography with photorefractive Bi12TiO20 crystal as holographic medium and two diode lasers emitting in the red region as light sources. By properly tuning and aligning the lasers a synthetic wavelength was generated and the resulting holographic image of the studied object appears modulated by cos2-contour fringes which correspond to the intersection of the object surface with planes of constant elevation. The position of such planes as a function of the illuminating beam angle and the tuning of the lasers was studied, as well as the fringe visibility. The fringe evaluation was performed by the four stepping technique for phase mapping and through the branch-cut method for phase unwrapping. A damage in an integrated circuit was analysed as well as the relief of a coin was measured, and a precision up to 10 μm was estimated. © 2009 SPIE.
Resumo:
Refractive and profilometric measurements of lenses were performed through holography with a photorefractive Bi12TiO20 crystal as the recording medium. Two properly aligned diode lasers emitting in the red region were employed as light sources. Both lasers were tuned in order to provide millimetric and sub-millimetric synthetic wavelengths. The surfaces of the test lens were covered by a 25-μm opaque plastic tape in order to allow the lens profilometry upon illuminating them with a collimated beam. The resulting holographic images appear covered by interference fringes corresponding to the wavefront geometry of the wave scattered by the lens. For refractive index measurement a diffusely scattering flat surface was positioned behind the uncovered lens which was also illuminated by a plane wave. The resulting contour interferogram describes the form of the wavefront after the beam traveled back and forth through the lens. The fringe quantitative evaluation was carried out through the four-stepping technique and the resulting phase map and the Branch-cut method was employed for phase unwrapping. The only non-optical procedure for lens characterization was the thickness measurement, made by a dial caliper. Exact ray tracing calculation was performed in order to establish a relation between the output wavefront geometry and the lens parameters like radii of curvature, thickness and refractive index. By quantitatively comparing the theoretical wavefront geometry with the experimental results relative uncertainties bellow 3% for refractive index and 1 % for focal length were obtained. © 2008 American Institute of Physics.
Resumo:
We discuss some fundamental characteristics of a phase-modulating device suitable to holographically project a monochrome video frame with 1280 x 720 resolution. The phase-modulating device is expected to be a liquid crystal over silicon chip with silicon area similar to that of commercial devices. Its basic characteristics, such as number of pixels, bits per pixel, and pixel dimensions, are optimized in terms of image quality and optical efficiency. Estimates of the image quality are made from the noise levels and contrast, while efficiency is calculated by considering the beam apodization, device dead space, diffraction losses, and the sinc envelope.