900 resultados para Histone deacetylase inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH3 (methyl) stretching bands at 2872 and 2960 cm1, which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm1, which originates from stretching vibrations of CH2 (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH2 stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH2 groups, we hypothesized that CH2 vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH2 vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH2 stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YKL-40 regulates vascular endothelial growth factors and induces tumor proliferation. We investigated YKL-40 before and after treatment with vorinostat in 31 polycythemia vera (PV) and 16 essential thrombocythemia (ET) patients. Baseline PV patient levels were 2 times higher than in healthy controls (P < 0.0001) and 1.7 times higher than in ET (P = 0.02). A significant correlation between YKL-40 at baseline and neutrophils, CRP, LDH, JAK2V617F and platelets in PV patients was observed, as well as a significantly greater reduction of YKL-40 levels in PV patients responding to therapy. YKL-40 might be a novel marker of disease burden and progression in myeloproliferative neoplasms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As key molecules that drive progression and chemoresistance in gastrointestinal cancers, epidermal growth factor receptor (EGFR) and HER2 have become efficacious drug targets in this setting. Lapatinib is an EGFR/HER2 kinase inhibitor suppressing signaling through the RAS/RAF/MEK (MAP/ERK kinase)/MAPK (mitogen-activated protein kinase) and PI3K (phosphoinositide 3-kinase)/AKT pathways. Histone deacetylase inhibitors (HDACi) are a novel class of agents that induce cell cycle arrest and apoptosis following the acetylation of histone and nonhistone proteins modulating gene expression and disrupting HSP90 function inducing the degradation of EGFR-pathway client proteins. This study sought to evaluate the therapeutic potential of combining lapatinib with the HDACi panobinostat in colorectal cancer (CRC) cell lines with varying EGFR/HER2 expression and KRAS/BRAF/PIK3CA mutations. Lapatinib and panobinostat exerted concentration-dependent antiproliferative effects in vitro (panobinostat range 7.2-30 nmol/L; lapatinib range 7.6-25.8 μmol/L). Combined lapatinib and panobinostat treatment interacted synergistically to inhibit the proliferation and colony formation in all CRC cell lines tested. Combination treatment resulted in rapid induction of apoptosis that coincided with increased DNA double-strand breaks, caspase-8 activation, and PARP cleavage. This was paralleled by decreased signaling through both the PI3K and MAPK pathways and increased downregulation of transcriptional targets including NF-κB1, IRAK1, and CCND1. Panobinostat treatment induced downregulation of EGFR, HER2, and HER3 mRNA and protein through transcriptional and posttranslational mechanisms. In the LoVo KRAS mutant CRC xenograft model, the combination showed greater antitumor activity than either agent alone, with no apparent increase in toxicity. Our results offer preclinical rationale warranting further clinical investigation combining HDACi with EGFR and HER2-targeted therapies for CRC treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Trichostatin A (TSA) is a histone deacetylase inhibitor that induces histone hyperacetylation and increases gene expression levels. The aim of the present study was to establish a suitable condition for the use of TSA in in vitro cultures of bovine embryos, and to determine whether TSA would increase blastocyst rates by improvement of chromatin remodelling during embryonic genome activation and by increasing the expression of crucial genes during early development. To test this hypothesis, 8-cell embryos were exposed to four concentrations of TSA for different periods of time to establish adequate protocols. In a second experiment, three experimental groups were selected for the evaluation of embryo quality based on the following parameters: apoptosis, total cell number and blastocyst hatching. TSA promoted embryonic arrest and degeneration at concentrations of 15, 25 and 50 nM. All treated groups presented lower blastocyst rates. Exposure of embryos to 5 nM for 144 h and to 15 nM for 48 h decreased blastocyst hatching. However, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (TUNEL) assay revealed similar apoptosis rates and total cell numbers in all groups studied. Although, in the present study, TSA treatment did not improve the parameters studied, the results provided background information on TSA supplementation during in vitro culture of bovine embryos and showed that embryo quality was apparently not affected, despite a decrease in blastocyst rate after exposure to TSA. © Cambridge University Press 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemopreventive effects of tributyrin (TB) and vitamin A (VA), alone or in combination, were investigated during the promotion phase of rat hepatocarcinogenesis. Compared to diethylnitrosamine control rats. TB and TB+VA-treated rats, but not VA-treated rats, presented a lower incidence and mean number of hepatocyte nodules and a smaller size of persistent preneoplastic lesions (pPNLs). In addition, TB and TB+VA-treated rats exhibited a higher apoptotic body index in pPNL and remodeling PNL, whereas VA-treated rats presented only a higher apoptotic body index in remodeling PNL. None of the treatments inhibited cell proliferation in PNL TB and TB+VA-treated rats, but not VA-treated rats, exhibited higher levels of H3K9 acetylation and p21 protein expression. TB and VA-treated rats exhibited increased hepatic concentrations of butyric acid and retinoids, respectively. Compared to normal rats, diethylnitrosamine control animals exhibited lower retinyl palmitate hepatic concentrations. All groups had similar expression levels and exhibited similar unmethylated CRBP-I promoter region in microdissected pPNL, indicating that epigenetic silencing of this gene was not involved in alteration of retinol metabolism in early hepatocarcinogenesis. Data support the effectiveness of TB as a dietary histone deacetylase inhibitor during the promotion phase of hepatocarcinogenesis, which should be considered for chemoprevention combination strategies. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined treatment with histone deacetylase inhibitors (HDACi) and retinoids has been suggested as a potential epigenetic strategy for the control of cancer. In the present study, we investigated the effects of treatment with butyrate, a dietary HDACi, combined with vitamin A on MCF-7 human breast cancer cells. Cell proliferation was evaluated by the crystal violet staining method. MCF-7 cells were plated at 5 x 10(4) cells/mL and treated with butyrate (1 mM) alone or combined with vitamin A (10 µM) for 24 to 120 h. Cell proliferation inhibition was 34, 10 and 46% following treatment with butyrate, vitamin A and their combination, respectively, suggesting that vitamin A potentiated the inhibitory activities of butyrate. Furthermore, exposure to this short-chain fatty acid increased the level of histone H3K9 acetylation by 9.5-fold (Western blot), but not of H4K16, and increased the expression levels of p21WAF1 by 2.7-fold (Western blot) and of RARβ by 2.0-fold (quantitative real-time PCR). Our data show that RARβ may represent a molecular target for butyrate in breast cancer cells. Due to its effectiveness as a dietary HDACi, butyrate should be considered for use in combinatorial strategies with more active retinoids, especially in breast cancers in which RARβ is epigenetically altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy modestly prolongs survival of patients with advanced gastric cancer, but strategies are needed to increase its efficacy. Histone deacetylase (HDAC) inhibitors modify chromatin and can block cancer cell proliferation and promote apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of the histone deacetylase inhibitor, MS-275, on the Fas signaling pathway and susceptibility of osteosarcoma (OS) to Fas ligand (FasL)-induced cell death. OS metastasizes almost exclusively to the lungs. We have shown that Fas expression in OS cells is inversely correlated with their metastatic potential. Fas+ cells are rapidly eliminated when they enter the lungs via interaction with FasL, which is constitutively expressed in the lungs. Fas- OS cells escape this FasL-induced apoptosis and survive in the lung microenvironment. Moreover, upregulation of Fas in established OS lung metastases results in tumor regression. Therefore, agents that upregulate Fas expression or activate the Fas signaling pathway may have therapeutic potential. Treatment of Fas- metastatic OS cell lines with 2 μM MS-275 sensitized cells to FasL-induced cell death in vitro. We found that MS-275 did not alter the expression of Fas on the cell surface; rather it resulted in increased levels of Fas within the membrane lipid rafts, as demonstrated by an increase in Fas expression in detergent insoluble lipid raft fractions. We further demonstrated that following MS-275 treatment, Fas colocalized with GM1+ lipid rafts and that there was a decrease in c-FLIP (cellular FLICE-inhibitory protein) mRNA and protein. Downregulation of c-FLIP correlated with caspase activation and apoptosis induction. Transfection of cells with shRNA to c-FLIP also resulted in the localization of Fas to lipid rafts. These studies indicate that MS-275 sensitizes OS cells to FasL by upregulating the expression of Fas in membrane lipid rafts, which correlated with the downregulation of c-FLIP. Treatment of nu/nu-mice with established OS lung metastases with oral MS-275 resulted in increased apoptosis, a significant inhibition of c-FLIP expression in tumors and tumor regression. Histopathological examination of mice showed no significant organ toxicity. Overall, these results suggest that the mechanism by which MS-275 sensitizes OS cells and lung metastases to FasL-induced cell death may be by a reduction in the expression of c-FLIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone acetylation is thought to have a role in transcription. To gain insight into the role of histone acetylation in retinoid-dependent transcription, we studied the effects of trichostatin A (TSA), a specific inhibitor of histone deacetylase, on P19 embryonal carcinoma cells. We show that coaddition of TSA and retinoic acid (RA) markedly enhances neuronal differentiation in these cells, although TSA alone does not induce differentiation but causes extensive apoptosis. Consistent with the cooperative effect of TSA and RA, coaddition of the two agents synergistically enhanced transcription from stably integrated RA-responsive promoters. The transcriptional synergy by TSA and RA required the RA-responsive element and a functional retinoid X receptor (RXR)/retinoic acid receptor (RAR) heterodimer, both obligatory for RA-dependent transcription. Furthermore, TSA led to promoter activation by an RXR-selective ligand that was otherwise inactive in transcription. In addition, TSA enhanced transcription from a minimum basal promoter, independently of the RA-responsive element. Finally, we show that TSA alone or in combination with RA increases in vivo endonuclease sensitivity within the RA-responsive promoter, suggesting that TSA treatment might alter a local chromatin environment to enhance RXR/RAR heterodimer action. Thus, these results indicate that histone acetylation influences activity of the heterodimer, which is in line with the observed interaction between the RXR/RAR heterodimer and a histone acetylase presented elsewhere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) catalyze the removal of acetyl groups on the amino-terminal lysine residues of core nucleosomal histones. This activity is associated generally with transcriptional repression. We have reported previously that inhibition of HDAC activity by hydroxamic acid-based hybrid polar compounds, such as suberoylanilide hydroxamic acid (SAHA), induces differentiation and/or apoptosis of transformed cells in vitro and inhibits tumor growth in vivo. SAHA is a potentially new therapeutic approach to cancer treatment and is in Phase I clinical trials. In several tumor cell lines examined, HDAC inhibitors alter the expression of less than 1% of expressed genes, including the cell cycle kinase inhibitor p21WAF1. In T24 bladder carcinoma cells, SAHA induces up to a 9-fold increase in p21WAF1 mRNA and protein, which is, at least in part, because of an increase in the rate of transcription of the gene. SAHA causes an accumulation of acetylated histones H3 and H4 in total cellular chromatin by 2 h, which is maintained through 24 h of culture. An increase in the accumulation of acetylated H3 and H4 was detected throughout the p21WAF1 promoter and the structural gene after culture with SAHA. The level of histone acetylation did not change in chromatin associated with the actin and p27 genes, and their mRNA expression was not altered during culture of T24 cells with SAHA. Thus, the present findings indicate that the induction of p21WAF1 by SAHA is regulated, at least in part, by the degree of acetylation of the gene-associated histones and that this induced increase in acetylation is gene selective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Globally, obesity and diabetes (particularly type 2 diabetes) represents a major challenge to world health. Despite decades of intense research efforts, the genetic basis involved in diabetes pathogenesis & conditions associated with obesity are still poorly understood. Recent advances have led to exciting new developments implicating epigenetics as an important mechanism underpinning diabetes and obesity related disease. One epigenetic mechanism known as the "histone code" describes the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as lysine acetyltransferases or KATs and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. Some of the known inhibitors of HDACs (HDACi) have also been shown to act as "chemical chaperones" to alleviate diabetic symptoms. In this review, we discuss the available evidence concerning the roles of HDACs in regulating chaperone function and how this may have implications in the management of diabetes. © 2009 Bentham Science Publishers Ltd.