411 resultados para Hilbert
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt".
Resumo:
We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.
Resumo:
We exhibit algorithms to compute systems of Hecke eigenvalues for spaces of Hilbert modular forms over a totally real field. We provide many explicit examples as well as applications to modularity and Galois representations.
Resumo:
A coercive estimate for a solution of a degenerate second order di fferential equation is installed, and its applications to spectral problems for the corresponding dif ferential operator is demonstrated. The suffi cient conditions for existence of the solutions of one class of the nonlinear second order diff erential equations on the real axis are obtained.
Resumo:
Compositional data analysis motivated the introduction of a complete Euclidean structure in the simplex of D parts. This was based on the early work of J. Aitchison (1986) and completed recently when Aitchinson distance in the simplex was associated with an inner product and orthonormal bases were identified (Aitchison and others, 2002; Egozcue and others, 2003). A partition of the support of a random variable generates a composition by assigning the probability of each interval to a part of the composition. One can imagine that the partition can be refined and the probability density would represent a kind of continuous composition of probabilities in a simplex of infinitely many parts. This intuitive idea would lead to a Hilbert-space of probability densitiesby generalizing the Aitchison geometry for compositions in the simplex into the set probability densities
Resumo:
We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic selfintersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.
Resumo:
We continue our study of classical mechanics using the methods of quantum mechanics. A Hilbert space is introduced, new conservation laws deduced, and the possibility of representing by new methods the many body classical problem discussed.
Resumo:
Abstract: In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one of the main problems that Hilbert encountered in his foundational studies consisted in securing a link between formalization and intuition. We will also analyze a related problem, that we will call "Frege's Problem", form the time of the foundation of geometry and investigate the role of the Axiom of Completeness in its solution.
Resumo:
Tesis (Maestro en Ingeniería Eléctrica con Orientación en Potencia) UANL, 2011.
Resumo:
L'objectif du présent texte est de discuter de la portée épistémique de la méthode axiomatique. Tout d'abord, il sera question du contexte à partir duquel la méthode axiomatique a émergé, ce qui sera suivi d'une discussion des motivations du programme de Hilbert et de ses objectifs. Ensuite, nous exposerons la méthode axiomatique dans un cadre plus moderne afin de mettre en lumière son utilité et sa portée théorique. Finalement, il s'agira d'explorer l'influence de la méthode axiomatique en physique, surtout en ce qui a trait à l'application de la méthode par Hilbert. Nous discuterons de ses objectifs et de l'épistémologie qui accompagnait sa vision du 6 e problème, ce qui nous amènera à discuter des limites épistémiques de la méthode axiomatique et de l'entreprise scientifique en général.
Resumo:
La crise des fondements n’a pas affecté les fondements arithmétiques du constructivisme de Kronecker, Bien plutôt, c’est le finitisme kroneckerien de la théorie de l’arithmétique générale ou polynomiale qui a permis à Hilbert de surmonter la crise des fondements ensemblistes et qui a poussé Gödel, inspiré par Hilbert, à proposer une extension du point de vue finitiste pour obtenir une preuve constructive de la consistance de l’arithmétique dans son interprétation fonctionnelle « Dialectica ».
Resumo:
This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.