974 resultados para High reactivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interconversion made easy: Metal–organic frameworks (MOFs) are surprisingly reactive under grinding conditions and can perform various rearrangements (see picture). In this respect, the results reveal clear parallels between MOFs and organic molecular materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the catalytic hydrogenation of hydrocarbons, subsurface hydrogen is known experimentally to be much more reactive than surface hydrogen. We use density functional theory to identify low-energy pathways for the hydrogenation of methyl adsorbed on Ni(111) by surface and subsurface hydrogen. The metastability of subsurface hydrogen with respect to chemisorbed hydrogen is mainly responsible for the low activation barrier for subsurface reactions. (C) 1999 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magnetic nanoparticles attract increasing attention because of their current and potential biomedical applications, such as, magnetically targeted and controlled drug delivery, magnetic hyperthermia and magnetic extraction. Increased magnetization can lead to improved performance in targeting and retention in drug delivery and a higher efficiency in biomaterials extraction. We reported an approach to synthesize iron contained magnetic nanoparticles with high magnetization and good oxidation resistibility by pyrolysis of iron pentacarbonyl (Fe(CO)[subscript 5]) in methane (CH[subscript 4]). Using the high reactivity of Fe nanoparticles, decomposition of CH[subscript 4] on the Fe nanoparticles leads to the formation of nanocrystalline iron carbides at a temperature below 260°C. Structural investigation indicated that the as-synthesized nanoparticles contained crystalline bcc Fe, iron carbides and spinel iron oxide. The Mössbauer and DSC results testified that the as-synthesized nanoparticle contained three crystalline iron carbide phases, which converted to Fe[subscript 3]C after a heat treatment. Surface analysis suggested that the as-synthesized and subsequently heated iron-iron carbide particles were coated by iron oxide, which originated from oxidization of surface Fe atoms. The heat-treated nanoparticles exhibited a magnetization of 160 emu/g, which is two times of that of currently used spinel iron oxide nanoparticles. After heating in an acidic solution with a pH value of 5 at 60°C for 20 h, the nanoparticles retained 90 percentage of the magnetization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main topic of my Ph.D. thesis is the study of nucleophilic and electrophilic aromatic substitution reaction, in particular from a mechanistic point of view. The research was mainly focused on the reactivity of superactivated aromatic systems. In spite of their high reactivity (hence the high reaction’s rate), we were able to identify and in some case to isolate -complexes until now only hypothesized. For example, interesting results comes from the study of the protonation of the supernucleophiles tris(dialkylamino)benzenes. However, the best result obtained in this field was the isolation and structural characterization of the first stables zwitterionic Wheland-Meisenheimer complexes by using 2,4-dipyrrolidine-1,3-thiazole as supernucleophile and 4,6-dinitrobenzofuroxan or 4,6-dinitrotetrazolepyridine as superelectrophile. These reactions were also studied by means of computational chemistry, which allowed us to better investigate on the energetic and properties of the reactions and reactants studied. We also discovered, in some case fortuitously, some relevant properties and application of the compounds we synthesized, such as fluorescence in solid state and nanoparticles, or textile dyeing. We decided to investigate all these findings also by collaborating with other research groups. During a period in the “Laboratoire de Structure et Réactivité des Systèmes Moléculaires Complexes-SRSMC, Université de Lorraine et CNRS, France, I carried out computational studies on new iron complexes for the use as dyes in Dye Sensitized Solar Cells (DSSC). Furthermore, thanks to this new expertise, I was involved in a collaboration for the study of the ligands’ interaction in biological systems. A collaboration with University of Urbino allowed us to investigate on the reactivity of 1,2-diaza-1,3-dienes toward nucleophiles such as amino and phosphine derivatives, which led to the synthesis of new products some of which are 6 or 7 member heterocycles containing both phosphorus and nitrogen atoms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poverty increases children's exposure to stress, elevating their risk for developing patterns of heightened sympathetic and parasympathetic stress reactivity. Repeated patterns of high sympathetic activation and parasympathetic withdrawal place children at risk for anxiety disorders. This study evaluated whether providing social support to preschool-age children during mildly stressful situations helps reduce reactivity, and whether this effect partly depends on children's previously assessed baseline reactivity patterns. The Biological Sensitivity to Context (BSC) theory proposes that highly reactive children may be more sensitive than less reactive children to all environmental influences, including social support. In contrast, conventional physiological reactivity (CPR) theory contends that highly reactive children are more vulnerable to the impact of stress but are less receptive to the potential benefits present within their social environments. In this study, baseline autonomic reactivity patterns were measured. Children were then randomly assigned to a high-support or neutral control condition, and the effect of social support on autonomic response patterns was assessed. Results revealed an interaction between baseline reactivity profiles and experimental condition. Children with patterns of high-reactivity reaped more benefits from the social support in the experimental condition than did their less reactive peers. Highly reactive children experienced relatively less reactivity reduction in the neutral condition while experiencing relatively greater reactivity reduction in the support condition. Despite their demonstrated stability over time, reactivity patterns are also quite susceptible to change at this age; therefore understanding how social support ameliorates reactivity will further efforts to avert stable patterns of high-reactivity among children with high levels of stress, ultimately reducing risk for anxiety disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-valent terminal metal-oxygen adducts are supposed to be potent oxidising intermediates in enzymatic catalyses. In contrast to those from groups 6-8, oxidants that contain late transition metals (Co, Ni, Cu) are poorly understood. Because of their high reactivity, only a few examples of these compounds have been observed. The aim of this project was to investigate the reactivity of high-valent Ni(III) complexes, containing a monodentate oxygen-donor ligands, in hydrogen atom abstraction (HAA) and oxygen atom transfer (OAT) reactions which are typical of biological high-valent metal-oxygen species. Particularly, the Ni(III) complexes were generated in situ, at low temperature, from the oxidation of the Ni(II) species.The nickel complexes studied during this work were supported by tridentate ligands, with a strong σ-donating ability and exceedingly resistant to several common degradation pathways. These complexes vary based on the monodentate group in the fourth coordination position site, which can be neutral or anionic. In particular, we prepared four different Ni(III) complexes [NiIII(pyN2Me2)(OCO2H)] (12), [NiIII(pyN2Me2)(ONO2)] (14), [NiIII(pyN2Me2)(OC(O)CH3)] (18) and [NiIII(pyN2Me2)(OC(O)H)] (25). They feature a bicarbonate (-OCO2H), nitrate (-ONO2), acetate (-OC(O)CH3) and formate (-OC(O)H) group, respectively.HAA and OAT reactions were performed by adding 2,6-di-tert-butylphenol (2,6-DTBP) at -40°C, and triphenylphosphine (PPh3) at -80°C, to the in situ generated Ni(III) complexes, respectively. These reactions were carried out by adding 7 to 500 equivalents of substrate, in order to ensure pseudo-first order conditions. Since, the reactivity of the Ni(III) complex featured by the bicarbonate group has been studied in a previous work, we only investigated that of the species bearing the nitrate, acetate and formate ligand. Finally we compared the value of the reaction rate of all the four species in the HAA and OAT reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

he intrinsic gas-phase reactivity of cyclic N-alkyl- and N-acyliminium ions toward addition of allyltrimethylsilane (ATMS) has been compared using MS2 and MS3 pentaquadrupole mass spectrometric experiments. An order of electrophilic reactivity has been derived and found to agree with orders of overall reactivity in solution. The prototype five-membered ring N-alkyliminium ion 1a and its N-CH3 analogue 1b, as well as their six-membered ring analogues 1c and 1d, lack N-acyl activation and they are, accordingly, inert toward ATMS addition. The five- and six-membered ring N-acyliminium ions with N-COCH3 exocycclic groups, 3a and 3b, respectively, are also not very reactive. The N-acyliminium ions 2a and 2c, with s-trans locked endocyclic N-carbonyl groups, are the most reactive followed closely by 3c and 3d with exocyclic (and unlocked) N-CO2CH3 groups. The five-membered ring N-acyliminium ions are more reactive than their six-membered ring analogues, that is:  2a > 2c and 3c > 3d. In contrast with the high reactivity of 2a, its N-CH3 analogue 2b is inert toward ATMS addition. For the first time, the transient intermediates of a Mannich-type condensation reaction were isolatedthe β-silyl cations formed by ATMS addition to N-acyliminium ionsand their intrinsic gas-phase behavior toward dissociation and reaction with a nucleophile investigated. When collisionally activated, the β-silyl cations dissociate preferentially by Grob fragmentation, that is, by retro-addition. With pyridine, they react competitively and to variable extents by proton transfer and by trimethylsilylium ion abstractionthe final and key step postulated for α-amidoalkylation. Becke3LYP/6-311G(d,p) reaction energetics, charge densities on the electrophilic C-2 site, and AM1 LUMO energies have been used to rationalize the order of intrinsic gas-phase electrophilic reactivity of cyclic iminium and N-acyliminium ions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological function of nitric oxide and its oxidized forms has received a great deal of attention over the past two decades. However much less attention has been focused on the reduced nitric oxide, nitroxyl (HNO). Unlike NO, HNO is highly reactive species and thus it needs to be generated by using donor compounds under experimental conditions. Currently there is only one donor available, Angeli s salt, which releases HNO in a controlled fashion under pysiological conditions. Prior studies have shown the pro-oxidative and cytotoxic potential of Angeli s salt compared to NO donors. The high reactivity of HNO with cysteine thiols is considered to form the biochemical basis for its unique properties compared to other nitrogen oxides. Such thiol modification cold result in disturbances of vital cellular functions and subsequently to death of disturbance sensitive cells, such as neurons. Therefore modification of proteins and lipids was studied in vitro and the potential neurotoxicity was studied in vivo by local infusion of Angeli s salt into the rat central nervous system. The results show that under aerobic in vitro conditions, HNO can, subsequent to autoxidation, cause irreversible oxidative modification of proteins and lipids. These effects are not however seen in cell culture or following infusion of Angeli s salt directly into the rat central nervous tissue likely due to presence of lower oxygen and higher thiol concentration. However, due to high reactivity with thiols, HNO can cause irreversible inactivation of cysteine modification sensitive enzymes such as cysteine proteases papain in vitro and cathepsin B in cell culture. Furthermore it was shown that infusion of HNO releasing Angeli s salt into the rat central nervous system causes necrotic cell death and motor dysfunction following infusion into the lumbal intrathecal space. In conclusion, the acute neurotoxic potential of Angeli s salt was shown to be relatively low, but still higher compared to NO donors. HNO was shown to affect numerous cellular processes which could result in neurotoxicity if HNO was produced in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alpha-Tocopherol is found to interact with the stable free radical DPPH orders of magnitude faster than ordinary phenols. It is suggested that the high reactivity arises from the coplanarity of the C-O-C framework with the aromatic ring. The rate constant of the reaction of Alpha-tocopherol with DPPH increases progressively with solvent polarity and can be quantitatively related to Kosower's Z parameter. Fatty acid derivatives slow down the reaction with DPPH due to binding with Alpha-tocopherol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidemiology of symptomatic rotaviruses from Bangalore and Mysore in Southern India was investigated. While serotype G3 predominated throughout the 7-year study period from 1988 to 1994 in Bangalore, serotype G1 was more predominant than serotype G3 in Mysore during 1993 and 1994. Serotype G2 strains were either not detected or infrequently observed in both the cities. However, several strains with subgroup I and lsquoshortrsquo RNA pattern that exhibited high reactivity with typing MAbs specific for serotype 2 as well as other serotypes were detected throughout the period. Among the nonserotypeable strains from both cities, several exhibited dual subgroup (SGI+II) or subgroup I specificity and lsquolongrsquo RNA pattern indicating their probable animal origin. Notably, a gradual, yet highly significant reduction in rotavirus gastroenteritis, from 45.3% in 1988 to 1.8% during 1994, was observed in Bangalore in stark contrast to the consistently high (about 34%) incidence of asymptomatic infections among neonates by I321-like G10P11 type strains during the same period. Moreover, I321-like asymptomatic strains were not detected in children with diarrhea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titaniuni and its alloys have many applications in aerospace, marine and other engineering industries. Titanium requires special melting techniques because of its high reactivity at elevated temperatures and needs special mould materials and methods for castings. This paper reviews the development of titanium casting technology.