884 resultados para High gain femtosecond peta watt Ti:sapphire amplifier
Resumo:
New parasitic lasing suppression techniques are developed and high gain amplification is demonstrated in a petawatt level Ti:sapphire amplifier based on the chirped pulse amplification (CPA) scheme. Cladding the large aperture Ti: sapphire with refractive-index matched liquid doped with absorber suppresses the transverse lasing. The acousto-optic programmable dispersive filter (AOPDF) is used to realize side-lobe suppression in the temporal profile of the compressed pulse. The 800 nm laser output with peak power of 0.89 PW and pulse width of 29.0 fs is demonstrated. (c) 2007 Optical Society of America.
Resumo:
We have developed a two-stage Ti:sapphire amplifier system which can produce 17-TW/23-fs pulses at a repetition rate 10 MHz. A birefringent plate is used in the regenerative amplifier to alleviate gain narrowing, while an all-reflective cylindrical-mirror-based pulse stretcher and an acousto-optic programmable dispersive filter (AOPDF) are used to compensate for the higher order dispersion of the system.
Resumo:
A 120TW/36fs laser system based on Ti:sapphire chirped-pulse amplification (CPA) has been successfully established in our lab. The final four pass Ti:sapphire amplifier pumped by an energetic single-shot Nd:YAG-Nd:glass laser was designed and optimized. With 24J/8ns pump energy at 532 nm, 300 mJ/220 ps chirped pulse was amplified to 5.98 J in this amplifier, and a total saturated gain of similar to 20 was achieved. The focused intensity of compressed beam could reach to 10(20) W/cm(2) with the M-2 of similar to 2.0. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We design and experimentally demonstrate some negative dispersion mirrors with optimized Gires-Tournois interferometers. The mirror structure is composed of 38 alternating Ta2O5 and SiO2 layers and could be regarded as two sections: high-reflectivity section consisting of a series of quarter-wavelength optical thickness stacks and negative-dispersion section consisting of only 13 layers. The designed mirrors exhibit the expected performance. These mirrors were fabricated by using ion beam sputtering. By adopting such mirrors, dispersion of a mode-locked femtosecond Ti:sapphire laser has been compensated for mostly. With two series of the mirrors, 32 fs and 15 fs pulses have been obtained respectively.
Resumo:
The design of a three‐stage high‐gain amplifier for laboratory use in audiofrequency investigations is described. Four‐electrode tubes are used as screen‐grid amplifiers and an amplification of the order of 200 per stage is obtained. The inaccuracy of McDonald's formula for calculation of stage‐gain has been pointed out. The gain‐frequency characteristics are given for power as well as voltage amplification. It is shown that extreme care is necessary in the design of shielding to obtain high‐voltage amplification of the order of 120 decibels as obtained in this three‐stage amplifier.
Resumo:
Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.
Resumo:
The interference patterns produced by Gaussian-shaped broad-bandwidth femtosecond pulsed laser sources are derived. The interference pattern contains both spatial and temporal properties of laser beam. Interference intensity dependent on the bandwidth of femtosecond laser are given. We demonstrate experimentally both the spatial and the temporal coherence properties of a Ti:sapphire femtosecond pulse laser, as well as its power spectrum by using a pinhole pair.
Resumo:
High-quality neodymium doped GGG laser crystals have been grown by Czochralski (Cz) method. Results of Nd:GGG thin chip laser operating at 1.064 μm pumped by Ti:sapphire laser operating at 808 nm were reported. The slop efficiency was as high as 20%.
Resumo:
There are two different effects to generate group delay dispersion by multilayer thin film mirrors: chirper effect and Gires-Tournois effect. Both effects are employed to introduce desired dispersion in the designed mirror. Thus the designed mirror provides large dispersion throughout broad waveband. Such mirror can be used for dispersion compensation in Ti:sapphire femtosecond lasers. Most group delay dispersion of a 5-mm Ti:sapphire crystal can be compensated perfectly with only four bounces of the designed mirror.
Resumo:
A novel microcavity semiconductor optical amplifier ( MCSOA) was proposed by incorporating top and bottom distributed Bragg reflectors ( DBRs) into the waveguide structure of conventional traveling-wave semiconductor optical amplifiers(TW-SOAs). The incoming( outgoing) light beam incidented onto (escaped from) the waveguide structure at a oblique angle through two optical windows, where the top DBR was etched away, and anti-reflection coating was deposited. The light beams inside the optical cavity were reflected repeatedly between two DBRs and propagated along waveguide in a zigzag optical path. The performance of the MCSOA was systematically investigated by extensive numerical simulation based on a traveling-wave model by taking into account the comprehensive effects of DBRs on both the amplification of signals and the filtering of spontaneous emission( SE). Our results show that the MCSOA is capable of achieving a fiber-to-fiber gain as high as 40dB and a low noise figure is less than 3.5dB.
Resumo:
Stable self-starting mode-locking states in a compact Ti: sapphire laser incorporating a home-made SBR with low loss double quanturn-well and low temperature and surface state hybrid absorber are investigated experimentally. The three mode-locking states, i.e. the passive mode-locking with a saturable absorber, the solition mode-locking and the Kerr-lens mode-locking have been successfully demonstrated. In this laser, chirped mirrors are used for dispersion compensation, and the 18 fs pulses are produced from the Kerr-lens mode-locking at 4.5W pump power, and output power is 150mW.
Resumo:
This paper presents the design of a wide-band low-noise amplifier (LNA) implemented in a 0.35 mu m SiGe BiCMOS technology for cable (DVB-C) and terrestrial (DVB-T) tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1-1GHz wide bandwidth and 18.8-dB gain with less than 1.4-dB gain variation. The noise figure(NF) of the wideband LNA is 5dB, its 1-dB compression point is -2dBm and IIP3 is 8dBm. The LNA dissipates 120mW power with a 5-V supply.