918 resultados para High Pressure Grinding Rolls
Resumo:
This paper summarises test results that were used to validate a model and scale-up procedure of the high pressure grinding roll (HPGR) which was developed at the JKMRC by Morrell et al. [Morrell, Lim, Tondo, David,1996. Modelling the high pressure grinding rolls. In: Mining Technology Conference, pp. 169-176.]. Verification of the model is based on results from four data sets that describe the performance of three industrial scale units fitted with both studded and smooth roll surfaces. The industrial units are currently in operation within the diamond mining industry and are represented by De Beers, BHP Billiton and Rio Tinto. Ore samples from the De Beers and BHP Billiton operations were sent to the JKMRC for ore characterisation and HPGR laboratory-scale tests. Rio Tinto contributed an historical data set of tests completed during a previous research project. The results conclude that the modelling of the HPGR process has matured to a point where the model may be used to evaluate new and to optimise existing comminution circuits. The model prediction of product size distribution is good and has been found to be strongly dependent of the characteristics of the material being tested. The prediction of throughput and corresponding power draw (based on throughput) is sensitive to inconsistent gap/diameter ratios observed between laboratory-scale tests and full-scale operations. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Particle breakage is an essential part of mineral processing. The aim is to reduce run of mine mineral ore to an optimal size for liberating target minerals and for subsequent recovery by separation processes such as flotation. This size reduction is typically accomplished in a series of stages in a grinding circuit tailored to the properties of the particular mine ore. Commonly this involves two or more classes of equipment starting with crushers, followed by SAG mills and then sometimes ball mills. Occasionally, high pressure grinding rolls or other novel devices are substituted. Broadly, energy consumption increases and energy efficiency decreases with the fineness of the material produced by each piece of equipment.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
The results of pressure-tuning Raman spectroscopic, X-ray powder diffraction and solid-state 13C-NMR studies of selected dicarboxylate anions intercalated in a Mg-Al layered double hydroxide (talcite) lattice are reported. The pressure dependences of the vibrational modes are linear for pressures up to 4.6 GPa indicating that no phase transitions occur. The interlayer spacings show that the oxalate, malonate and succinate dianions are oriented perpendicular to the layers, but the glutarate and adipate are tilted. The solid-state 13C-NMR spectra of these materials show full chemical shift anisotropy and, therefore, the anions are not mobile at room temperature.
Resumo:
The effect of sample geometry on the melting rates of burning iron rods was assessed. Promoted-ignition tests were conducted with rods having cylindrical, rectangular, and triangular cross-sectional shapes over a range of cross-sectional areas. The regression rate of the melting interface (RRMI) was assessed using a statistical approach which enabled the quantification of confidence levels for the observed differences in RRMI. Statistically significant differences in RRMI were observed for rods with the same cross-sectional area but different cross-sectional shape. The magnitude of the proportional difference in RRMI increased with the cross-sectional area. Triangular rods had the highest RRMI, followed by rectangular rods, and then cylindrical rods. The dependence of RRMI on rod shape is shown to relate to the action of molten metal at corners. The corners of the rectangular and triangular rods melted faster than the faces due to their locally higher surface area to volume ratios. This phenomenon altered the attachment geometry between liquid and solid phases, increasing the surface area available for heat transfer, causing faster melting. Findings relating to the application of standard flammability test results in industrial situations are also presented.
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
Characterization of the combustion products released during the burning of commonly used engineering metallic materials may aid in material selection and risk assessment for the design of oxygen systems. The characterization of combustion products in regards to size distribution and morphology gives useful information for systems addressing fire detection. Aluminum rods (3.2-mm diameter cylinders) were vertically mounted inside a combustion chamber and ignited in pressurized oxygen by resistively heating an aluminum/palladium igniter wire attached to the bottom of the test sample. This paper describes the experimental work conducted to establish the particle size distribution and morphology of the resultant combustion products collected after the burning was completed and subsequently analyzed. In general, the combustion products consisted of a re-solidified oxidized slag and many small hollow spheres of size ranging from about 500 nm to 1000 µm in diameter, surfaced with quenched dendritic and grain-like structures. The combustion products were characterized using optical and scanning electron microscopy.
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism
Resumo:
“Hybrid” hydrogen storage, where hydrogen is stored in both the solid material and as a high pressure gas in the void volume of the tank can improve overall system efficiency by up to 50% compared to either compressed hydrogen or solid materials alone. Thermodynamically, high equilibrium hydrogen pressures in metal–hydrogen systems correspond to low enthalpies of hydrogen absorption–desorption. This decreases the calorimetric effects of the hydride formation–decomposition processes which can assist in achieving high rates of heat exchange during hydrogen loading—removing the bottleneck in achieving low charging times and improving overall hydrogen storage efficiency of large hydrogen stores. Two systems with hydrogenation enthalpies close to −20 kJ/mol H2 were studied to investigate the hydrogenation mechanism and kinetics: CeNi5–D2 and ZrFe2−xAlx (x = 0.02; 0.04; 0.20)–D2. The structure of the intermetallics and their hydrides were studied by in situ neutron powder diffraction at pressures up to 1000 bar and complementary X-ray diffraction. The deuteration of the hexagonal CeNi5 intermetallic resulted in CeNi5D6.3 with a volume expansion of 30.1%. Deuterium absorption filled three different types of interstices, Ce2Ni2 and Ni4 tetrahedra, and Ce2Ni3 half-octahedra and was accompanied by a valence change for Ce. Significant hysteresis was observed between deuterium absorption and desorption which profoundly decreased on a second absorption cycle. For the Al-modified Laves-type C15 ZrFe2−xAlx intermetallics, deuteration showed very fast kinetics of H/D exchange and resulted in a volume increase of the FCC unit cells of 23.5% for ZrFe1.98Al0.02D2.9(1). Deuterium content, hysteresis of H/D uptake and release, unit cell expansion and stability of the hydrides systematically change with the amount of Al content. In the deuteride D atoms exclusively occupy the Zr2(Fe,Al)2 tetrahedra. Observed interatomic distances are Zr–D = 1.98–2.11; (Fe, Al)–D = 1.70–1.75A˚ . Hydrogenation slightly increases the magnetic moment of the Fe atoms in ZrFe1.98Al0.02 and ZrFe1.96Al0.04 from 1.9 �B at room temperature for the alloy to 2.2 �B for its deuteride.
Resumo:
The present study explores reproducing the closest geometry of a high pressure ratio single stage radial-inflow turbine applied in the Sundstrans Power Systems T-100 Multipurpose Small Power Unit. The commercial software ANSYS-Vista RTD along with a built in module, BladeGen, is used to conduct a meanline design and create 3D geometry of one flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Results are compared with numerical and experimental data published in the literature in order to generate the exact geometry of the existing turbine and validate the numerical results against the experimental ones.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.
Resumo:
This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.