945 resultados para Heuristic programming
Resumo:
Business processes designers take into account the resources that the processes would need, but, due to the variable cost of certain parameters (like energy) or other circumstances, this scheduling must be done when business process enactment. In this report we formalize the energy aware resource cost, including time and usage dependent rates. We also present a constraint programming approach and an auction-based approach to solve the mentioned problem including a comparison of them and a comparison of the proposed algorithms for solving them
Resumo:
In the spatial electric load forecasting, the future land use determination is one of the most important tasks, and one of the most difficult, because of the stochastic nature of the city growth. This paper proposes a fast and efficient algorithm to find out the future land use for the vacant land in the utility service area, using ideas from knowledge extraction and evolutionary algorithms. The methodology was implemented into a full simulation software for spatial electric load forecasting, showing a high rate of success when the results are compared to information gathered from specialists. The importance of this methodology lies in the reduced set of data needed to perform the task and the simplicity for implementation, which is a great plus for most of the electric utilities without specialized tools for this planning activity. © 2008 IEEE.
Resumo:
Engineering of negotiation model allows to develop effective heuristic for business intelligence. Digital ecosystems demand open negotiation models. To define in advance effective heuristics is not compliant with the requirement of openness. The new challenge is to develop business intelligence in advance exploiting an adaptive approach. The idea is to learn business strategy once new negotiation model rise in the e-market arena. In this paper we present how recommendation technology may be deployed in an open negotiation environment where the interaction protocol models are not known in advance. The solution we propose is delivered as part of the ONE Platform, open source software that implements a fully distributed open environment for business negotiation
Resumo:
Engineering of negotiation model allows to develop effective heuristic for business intelligence. Digital ecosystems demand open negotiation models. To define in advance effective heuristics is not compliant with the requirement of openness. The new challenge is to develop business intelligence in advance exploiting an adaptive approach. The idea is to learn business strategy once new negotiation model rise in the e-market arena. In this paper we present how recommendation technology may be deployed in an open negotiation environment where the interaction protocol models are not known in advance. The solution we propose is delivered as part of the ONE Platform, open source software that implements a fully distributed open environment for business negotiation
Resumo:
The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset
Resumo:
This paper introduces a new variant of the Traveling Car Renter Problem, named Prizecollecting Traveling Car Renter Problem. In this problem, a set of vertices, each associated with a bonus, and a set of vehicles are given. The objective is to determine a cycle that visits some vertices collecting, at least, a pre-defined bonus, and minimizing the cost of the tour that can be traveled with different vehicles. A mathematical formulation is presented and implemented in a solver to produce results for sixty-two instances. The proposed problem is also subject of an experimental study based on the algorithmic application of four metaheuristics representing the best adaptations of the state of the art of the heuristic programming.We also provide new local search operators which exploit the neighborhoods of the problem, construction procedures and adjustments, created specifically for the addressed problem. Comparative computational experiments and performance tests are performed on a sample of 80 instances, aiming to offer a competitive algorithm to the problem. We conclude that memetic algorithms, computational transgenetic and a hybrid evolutive algorithm are competitive in tests performed
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
Los protocolos de medición antropométrica se caracterizan por la profusión de medidas discretas o localizadas, en un intento para caracterizar completamente la forma corporal del sujeto -- Dichos protocolos se utilizan intensivamente en campos como medicina deportiva, forense y/o reconstructiva, diseño de prótesis, ergonomía, en la confección de prendas, accesorios, etc -- Con el avance de algoritmos de recuperación de formas a partir de muestreos (digitalizaciones) la caracterización antropométrica se ha alterado significativamente -- El articulo presente muestra el proceso de caracterización digital de forma corpórea, incluyendo los protocolos de medición sobre el sujeto, el ambiente computacional - DigitLAB- (desarrollado en el CII-CAD-CAM-CG de la Universidad EAFIT) para recuperación de superficies, hasta los modelos geométricos finales -- Se presentan comparaciones de los resultados obtenidos con DigitLAB y con paquetes comerciales de recuperación de forma 3D -- Los resultados de DigitLAB resultan superiores, debido principalmente al hecho de que este toma ventaja de los patrones de las digitalizaciones (planares de contacto, por rejilla de pixels - range images -, etc.) y provee módulos de tratamiento geométrico - estadístico de los datos para poder aplicar efectivamente los algoritmos de recuperación de forma -- Se presenta un caso de estudio dirigido a la industria de la confección, y otros efectuados sobre conjuntos de prueba comunes en el ámbito científico para la homologación de algoritmos
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
Hannenhalli and Pevzner developed the first polynomial-time algorithm for the combinatorial problem of sorting of signed genomic data. Their algorithm solves the minimum number of reversals required for rearranging a genome to another when gene duplication is nonexisting. In this paper, we show how to extend the Hannenhalli-Pevzner approach to genomes with multigene families. We propose a new heuristic algorithm to compute the reversal distance between two genomes with multigene families via the concept of binary integer programming without removing gene duplicates. The experimental results on simulated and real biological data demonstrate that the proposed algorithm is able to find the reversal distance accurately. ©2005 IEEE