745 resultados para Heuristic approaches


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper evaluates meta-heuristic approaches to solve a soft drink industry problem. This problem is motivated by a real situation found in soft drink companies, where the lot sizing and scheduling of raw materials in tanks and products in lines must be simultaneously determined. Tabu search, threshold accepting and genetic algorithms are used as procedures to solve the problem at hand. The methods are evaluated with a set of instance already available for this problem. This paper also proposes a new set of complex instances. The computational results comparing these approaches are reported. © 2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The flowshop scheduling problem with blocking in-process is addressed in this paper. In this environment, there are no buffers between successive machines: therefore intermediate queues of jobs waiting in the system for their next operations are not allowed. Heuristic approaches are proposed to minimize the total tardiness criterion. A constructive heuristic that explores specific characteristics of the problem is presented. Moreover, a GRASP-based heuristic is proposed and Coupled with a path relinking strategy to search for better outcomes. Computational tests are presented and the comparisons made with an adaptation of the NEH algorithm and with a branch-and-bound algorithm indicate that the new approaches are promising. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Avec l’usage élargi de la CAAO, ces outils ont été largement utilisés dans le processus de conception architecturale. En dépit des fonctionnalités avancées offertes par les systèmes de CAAO, l'utilisation de la CAAO est principalement concentrée dans les étapes de production, comme un support graphique pour le dessin, la modélisation, le rendu et la simulation. Par conséquent, il est raisonnable de considérer que la situation actuelle relative à l’usage de la CAAO dans la profession d'architecte appelle à de nouvelles améliorations. En d'autres termes, nous devons trouver un moyen de mieux intégrer la technologie et les outils de CAAO dans le processus de conception architecturale, qui est notre question de recherche. Nous avons besoin de savoir comment la CAAO pourrait être utilisée pour améliorer la capacité de conception de l'architecte. Il ressort des discussions et des recherches menées pour cette étude que nous voulons un soutien de la technologie pour nous aider à mieux concevoir et non pas que la technologie conçoive à notre place. Nous aimerions avoir un système de CAAO qui pourrait nous servir d’assistant à la conception. En étudiant la situation de l'intégration des outils de CAAO dans les pratiques actuelles de conception des architectes et en examinant les approches utilisées dans les premières tentatives de développement d’un outil de CAAO intégré au processus de conception, on peut conclure que l'approche exploratoire et heuristique serait une meilleure approche qui pourrait être adaptée pour développer un système CAAO en soutien au travail de l’architecte. De plus, une étude plus approfondie a démontré que les deux sous- approches des approches exploratoires et heuristiques (approches basées sur les cas et les contraintes), sont applicables, mais aucune d'elles n'est suffisante. Par conséquent, l’approche hybride qui prend en compte les avantages de chacune des deux sous- approches précitées serait la plus applicable. Elle nous permettrait de développer un outil CAAD qui pourrait vraiment être intégré dans le processus de conception architecturale. Cette conclusion a été vérifiée par une étude complémentaire basée sur des entrevues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N  M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The data of four networks that can be used in carrying out comparative studies with methods for transmission network expansion planning are given. These networks are of various types and different levels of complexity. The main mathematical formulations used in transmission expansion studies-transportation models, hybrid models, DC power flow models, and disjunctive models are also summarised and compared. The main algorithm families are reviewed-both analytical, combinatorial and heuristic approaches. Optimal solutions are not yet known for some of the four networks when more accurate models (e.g. The DC model) are used to represent the power flow equations-the state of the art with regard to this is also summarised. This should serve as a challenge to authors searching for new, more efficient methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade we have seen how small and light weight aerial platforms - aka, Mini Unmanned Aerial Vehicles (MUAV) - shipped with heterogeneous sensors have become a 'most wanted' Remote Sensing (RS) tool. Most of the off-the-shelf aerial systems found in the market provide way-point navigation. However, they do not rely on a tool that compute the aerial trajectories considering all the aspects that allow optimizing the aerial missions. One of the most demanded RS applications of MUAV is image surveying. The images acquired are typically used to build a high-resolution image, i.e., a mosaic of the workspace surface. Although, it may be applied to any other application where a sensor-based map must be computed. This thesis provides a study of this application and a set of solutions and methods to address this kind of aerial mission by using a fleet of MUAVs. In particular, a set of algorithms are proposed for map-based sampling, and aerial coverage path planning (ACPP). Regarding to map-based sampling, the approaches proposed consider workspaces with different shapes and surface characteristics. The workspace is sampled considering the sensor characteristics and a set of mission requirements. The algorithm applies different computational geometry approaches, providing a unique way to deal with workspaces with different shape and surface characteristics in order to be surveyed by one or more MUAVs. This feature introduces a previous optimization step before path planning. After that, the ACPP problem is theorized and a set of ACPP algorithms to compute the MUAVs trajectories are proposed. The problem addressed herein is the problem to coverage a wide area by using MUAVs with limited autonomy. Therefore, the mission must be accomplished in the shortest amount of time. The aerial survey is usually subject to a set of workspace restrictions, such as the take-off and landing positions as well as a safety distance between elements of the fleet. Moreover, it has to avoid forbidden zones to y. Three different algorithms have been studied to address this problem. The approaches studied are based on graph searching, heuristic and meta-heuristic approaches, e.g., mimic, evolutionary. Finally, an extended survey of field experiments applying the previous methods, as well as the materials and methods adopted in outdoor missions is presented. The reported outcomes demonstrate that the findings attained from this thesis improve ACPP mission for mapping purpose in an efficient and safe manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional heuristic approaches to the Examination Timetabling Problem normally utilize a stochastic method during Optimization for the selection of the next examination to be considered for timetabling within the neighbourhood search process. This paper presents a technique whereby the stochastic method has been augmented with information from a weighted list gathered during the initial adaptive construction phase, with the purpose of intelligently directing examination selection. In addition, a Reinforcement Learning technique has been adapted to identify the most effective portions of the weighted list in terms of facilitating the greatest potential for overall solution improvement. The technique is tested against the 2007 International Timetabling Competition datasets with solutions generated within a time frame specified by the competition organizers. The results generated are better than those of the competition winner in seven of the twelve examinations, while being competitive for the remaining five examinations. This paper also shows experimentally how using reinforcement learning has improved upon our previous technique.