927 resultados para Heisenberg uncertainty principle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss the mathematical aspects of the Heisenberg uncertainty principle within local fractional Fourier analysis. The Schrödinger equation and Heisenberg uncertainty principles are structured within local fractional operators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the an experimental setup to check the Heisenberg uncertainty principle. The description of the experimental setup and of the theoretical foundations is aimed at promoting the familiarization of the students with the involved concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a succinct review of the canonical formalism of classical mechanics, followed by a brief review of the main representations of quantum mechanics. We emphasize the formal similarities between the corresponding equations. We notice that these similarities contributed to the formulation of quantum mechanics. Of course, the driving force behind the search of any new physics is based on experimental evidence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech -- Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions -- A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds -- Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions -- Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it -- Finally features related with emotions in voiced speech are extracted and presented

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The personal legal status of native non catholic people of Portuguese colonial Empire during the nineteenth century, their position in what concerns Portuguese citizenship, is the main subject of this article. While discussing constitutional articles on religion, Portuguese deputies of the nineteenth century were confronted with a set of problems about that status which they find difficult to solve: should non catholic peoples who were born in Portuguese colonial territory be treated as plain Portuguese citizens or where they just “savage people”, “colonial subjects” or, in a more optimistic approach, “civilizing subjects”. The results were not conclusive, giving rise to an “uncertainty principle” which enabled central and local government to decide in an almost casuistic way about native people status and rights.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of scattering of neutral fermions in two-dimensional spacetime is approached with a pseudoscalar potential step in the Dirac equation. Some unexpected aspects of the solutions beyond the absence of Klein's paradox are presented. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength. Added plausibility for the existence of bound-state solutions in a pseudoscalar double-step potential found in a recent Letter is given. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.