889 resultados para Heavy Metal pollution
Resumo:
The research was carried out to assess the trace metal concentration in sediments of ship breaking area in Bangladesh. The study areas were separated into Ship breaking Zone and Reference Site for comparative analysis. Metals like Iron ( Fe) was found at 11932 to 41361.71µg.g-1 in the affected site and 3393.37 µg.g-1 in the control site. Manganese (Mn) varied from 2.32 to 8.25 µg.g-1 in the affected site where as it was recorded as 1.8 µg.g-1 in the control area. Chromium(Cr), Nickel (Ni), Zinc(Zn) and Lead (Pb) were also varied from 22.89 to 86.72 µg.g-1; 23.12 to 48.6;83.78 to 142.85 and 36.78 to 147.83 µg.g-1 respectively in the affected site whereas these were recorded as 19; 3.98; 22.22 and 8.82 µg.g-1 in the control site. Copper (Cu); Cadmium (Cd) and Mercury (Hg) concentration were varied from 21.05 to 39.85; 0.57 to 0.94 and 0.05 to 0.11 µg.g-1 in the affected site and 33.0; 0.115 and 0.01 µg.g-1 in the control site. It may conclude that heavy metal pollution in sediments at ship breaking area of Bangladesh is at alarming stage.
Resumo:
Goal, Scope and Background. Heavy metal is among one of the pollutants, which cause severe threats to humans and the environment in China. The aim of the present review is to make information on the source of heavy metal pollution, distribution of heavy metals in the environment, and measures of pollution control accessible internationally, which are mostly published in Chinese. Methods. Information from scientific journals, university journals and governmental releases are compiled focusing mainly on Cd, Cu, Pb and Zn. Partly Al, As, Cr, Fe, Hg, Mn and Ni are included also in part as well. Results and Discussion. In soil, the average contents of Cd, Cu, Pb and Zn are 0.097, 22.6, 26.0 and 74.2 mg/kg, respectively. In the water of. the Yangtze River Basin, the concentrations of Cd, Cu, Pb and Zn are 0.080, 7.91, 15.7 and 18.7 pg/L, respectively. In reference to human activities, the heavy metal pollution comes from three sources: industrial emission, wastewater and solid waste. The environment such as soil, water and air were polluted by heavy metals in some cases. The contents of Cd, Cu, Pb and Zn even reach 3.16, 99.3, 84.1 and 147 mg/kg, respectively, in the soils of a wastewater irrigation zone. These contaminants pollute drinking water and food, and threaten human health. Some diseases resulting from pollution of geological and environmental origin, were observed with long-term and non-reversible effects. Conclusions. In China, the geological background level of heavy metal is low, but with the activity of humans, soil, water, air, and plants are polluted by heavy metals in some cases and even affect human health through the food chain. Recommendations and Outlook. To remediate and improve environmental quality is a long strategy for the polluted area to keep humans and animals healthy. Phytoremediation would be an effective technique to remediate the heavy metal pollutions.
Resumo:
Mapping the spatial distribution of contaminants in soils is the basis of pollution evaluation and risk control. Interpolation methods are extensively applied in the mapping processes to estimate the heavy metal concentrations at unsampled sites. The performances of interpolation methods (inverse distance weighting, local polynomial, ordinary kriging and radial basis functions) were assessed and compared using the root mean square error for cross validation. The results indicated that all interpolation methods provided a high prediction accuracy of the mean concentration of soil heavy metals. However, the classic method based on percentages of polluted samples, gave a pollution area 23.54-41.92% larger than that estimated by interpolation methods. The difference in contaminated area estimation among the four methods reached 6.14%. According to the interpolation results, the spatial uncertainty of polluted areas was mainly located in three types of region: (a) the local maxima concentration region surrounded by low concentration (clean) sites, (b) the local minima concentration region surrounded with highly polluted samples; and (c) the boundaries of the contaminated areas. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Xanthoria parietina, common foliose lichen, growing in its natural habitat, was analysed for the concentration of five heavy metals (Fe, Cr, Zn, Pb and Cu) from different forest sites of North East of Morocco (Kenitra, Sidi Boughaba, Mkhinza, Ceinture Verte near Temara city, Skhirate, Bouznika and Mohammedia). The quantification was carried out by inductively coupled plasma - atomic emission spectrometry (ICP-AES). Results were highly significant p<0,001. The concentration of metals is correlated with the vehicular activity and urbanization. The total metal concentration is highest at the Kenitra area, followed by Ceinture Verte site near Temara city, which experience heavy traffic throughout the year. Scanning electron microscopy (SEM) of particulate matter on lichen of Xanthoria parietina was assessed as a complementary technique to wet chemical analysis for source apportionment of airborne contaminant. Analysis revealed high level of Cu, Cr, Zn and Pb in samples near roads.
Resumo:
1. Wild bees are one of the most important groups of pollinators in the temperate zone. Therefore, population declines have potentially negative impacts for both crop and wildflower pollination. Although heavy metal pollution is recognized to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bees. 2. We investigated whether heavy metal pollution is a potential threat to wild bee communities by comparing (i) species number, (ii) diversity and (iii) abundance as well as (iv) natural mortality of emerging bees along two independent gradients of heavy metal pollution, one at Olkusz (OLK), Poland and the other at Avonmouth (AVO), UK. We used standardized nesting traps to measure species richness and abundance of wild bees, and we recorded the heavy metal concentration in pollen collected by the red mason bee Osmia rufa as a measure of pollution. 3. The concentration of cadmium, lead and zinc in pollen collected by bees ranged from a background level in unpolluted sites [OLK: 1·3, 43·4, 99·8 (mg kg−1); AVO: 0·8, 42·0, 56·0 (mg kg−1), respectively] to a high level on sites in the vicinity of the OLK and AVO smelters [OLK: 6·7, 277·0, 440·1 (mg kg−1); AVO: 9·3, 356·2, 592·4 (mg kg−1), respectively]. 4. We found that with increasing heavy metal concentration, there was a steady decrease in the number, diversity and abundance of solitary, wild bees. In the most polluted sites, traps were empty or contained single occupants, whereas in unpolluted sites, the nesting traps collected from 4 to 5 species represented by up to ten individuals. Moreover, the proportion of dead individuals of the solitary bee Megachile ligniseca increased along the heavy metal pollution gradient at OLK from 0·2 in uncontaminated sites to 0·5 in sites with a high concentration of pollution. 5. Synthesis and applications. Our findings highlight the negative relationship between heavy metal pollution and populations of wild bees and suggest that increasing wild bee richness in highly contaminated areas will require special conservation strategies. These may include creating suitable nesting sites and sowing a mixture of flowering plants as well as installing artificial nests with wild bee cocoons in polluted areas. Applying protection plans to wild pollinating bee communities in heavy metal-contaminated areas will contribute to integrated land rehabilitation to minimize the impact of pollution on the environment.
Resumo:
1. Bees are one of the most important groups of pollinators in the temperate zone. Although heavy metal pollution is recognised to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bee survival and reproduction. 2. We investigated the impact of heavy metal pollution on the wild bee Osmia rufa (Hymenoptera: Megachilidae) by comparing their survival, reproduction and population dynamics along two independent gradients of heavy metal pollution, one in Poland and the other in the United Kingdom. We used trap nests to evaluate the response of fitness and survival parameters of O. rufa. To quantify the levels of pollution, we directly measured the heavy metal concentration in provisions collected by O. rufa. 3. We found that with increasing heavy metal concentration, there was a steady decrease in number of brood cells constructed by females and an increase in the proportion of dead offspring. In the most polluted site, there were typically 3–4 cells per female with 50–60% dead offspring, whereas in unpolluted sites there were 8 to 10 cells per female and only 10–30% dead offspring. Moreover, the bee population growth rate (R0) decreased along the heavy metal pollution gradients. In unpolluted sites, R0 was above 1, whereas in contaminated sites, the values tended to be below 1. 4. Our findings reveal a negative relationship between heavy metal pollution and several fitness parameters of the wild bee O. rufa, and highlight a mechanism whereby the detrimental effects of heavy metal pollution may severely impact wild bee communities.
Resumo:
The research examines the deposition of airborne particles which contain heavy metals and investigates the methods that can be used to identify their sources. The research focuses on lead and cadmium because these two metals are of growing public and scientific concern on environmental health grounds. The research consists of three distinct parts. The first is the development and evaluation of a new deposition measurement instrument - the deposit cannister - designed specifically for large-scale surveys in urban areas. The deposit cannister is specifically designed to be cheap, robust, and versatile and therefore to permit comprehensive high-density urban surveys. The siting policy reduces contamination from locally resuspended surface-dust. The second part of the research has involved detailed surveys of heavy metal deposition in Walsall, West Midlands, using the new high-density measurement method. The main survey, conducted over a six-week period in November - December 1982, provided 30-day samples of deposition at 250 different sites. The results have been used to examine the magnitude and spatial variability of deposition rates in the case-study area, and to evaluate the performance of the measurement method. The third part of the research has been to conduct a 'source-identification' exercise. The methods used have been Receptor Models - Factor Analysis and Cluster Analysis - and a predictive source-based deposition model. The results indicate that there are six main source processes contributing to deposition of metals in the Walsall area: coal combustion, vehicle emissions, ironfounding, copper refining and two general industrial/urban processes. |A source-based deposition model has been calibrated using facctorscores for one source factor as the dependent variable, rather than metal deposition rates, thus avoiding problems traditionally encountered in calibrating models in complex multi-source areas. Empirical evidence supports the hypothesised associatlon of this factor with emissions of metals from the ironfoundry industry.
Resumo:
This thesis Entitled studies on the effect of toxic heavy metal mercury on the physiology and biochemistry of an estuarine crab scylla serrata (Forskal). Evaluate the toxicity of three sub lethal concentrations of mercury, viz., 0.009 mg/l, 0.02 mg/1, and 0.04 mg/l on the mud crab, Scylla serrata through bioaccumulation, and depuration studies. To characterize the biochemical responses to the sub-lethal stress of mercury in chelate muscles, abdominal muscles, hepatopancreas and gills. To study the activity pattern of acid and alkaline phosphatases in mercury-exposed crabs. To evaluate the induced changes in these tissues through histopathological studies,The Cochin backwaters is one of the most productive and biologically active backwater systems, and is the habitat of varieties of fishes, mollusks, and crustaceans, though this water body also receives tons of effluents from factories located on the banks of the river, Periyar.To study the activity levels of acid and alkaline phosphatases in crabs, at three time periods, exposed to three sub lethal concentration of mercury,