989 resultados para Heating process
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to analyze the effects of heating on some quality characteristics and antioxidant activity of flaxseed hull oil. Polyunsaturated fatty acids (PUFA) and Cox value decreased during heating. Heating process led to considerable increase in saponification value (SV), peroxide value (PV), p-anisidine value (p-AnV), oxidative value (OV) and specific extinction at 232 and 270 nm. There was a significant decrease in oil stability during heating process (1.4-1.0 h). Fuel properties of flaxseed hull oil were also changed after heating treatment. Heating process caused loss of total phenolic acids, total flavanoids, carotenoids and chlorophyll pigments. Phospholipids (PL) content were less changed compared to other bioactive compounds. Antioxidant activity of flaxseed hull oil decreased during heating process.
Resumo:
Madeira wine is a product of well-established reputation, whose aroma and flavour is the result of unique combinations. Particularly, its maturation may include estufagem, wherein wine is usually heated at 45 °C for three months. During this period, several chemical changes may occur, so it is essential to assess its impact on the wine. In this sense, the main objective of the thesis was to evaluate the effect estufagem on the chemical constituents of Madeira wine, specifically on those molecules potentially important in the development of its typical features. Firstly, analytical methodologies capable of determining the target compounds, combining precision and reproducibility to execution effectiveness, were developed. Then various monovarietal Madeira wines were analysed during estufagem under standard and overheating conditions in order to assess its effect. The following compounds were evaluated: furans, amino acids, biogenic amines, polyphenols, organic acids and volatile compounds. In addition, the total polyphenolic composition, the antioxidant potential and the colour of these wines were also evaluated. The results show that most constituents change due to the heating process. Particularly, the heating promotes the development of 5-hydroxymethylfurfural (HMF) in sweet wines submitted to estufagem at higher temperatures. Moreover, estufagem provides the decrease of most amino acids, suggesting their involvement in the formation of the bouquet of these wines. Regarding the total polyphenol content and antioxidant potential of these wines they do not seem to be greatly affected by the heating step, however most monomeric polyphenols decrease during this process. The thermal processing of Madeira wines favours the development of the volatile composition, especially of volatiles usually reported as typical aromas of Madeira wines. Finally, it was demonstrated that the thermal degradation of sugars, especially of fructose, promotes the emergence of volatile compounds identified in baked wines.
Resumo:
Zur Untersuchung von Effekten beim Laserheizen von Polymeren wurde ein Temperaturmessaufbau entwickelt. Das Messprinzip basiert auf der Auswertung der thermischen Emission. Der Messaufbau besteht aus einer hochauflösenden Kamera, ausgestattet mit Bildverstärker, sowie Interferenzfiltern um eine spektrale Auflösung zu gewährleisten und einem gepulster NIR-Heizlaser. Die Pulsdauer des Lasers liegt in der Größenordnung von 10 µs, der Strahldurchmesser durch entsprechende Fokussierung in der Größenordnung von 10 µm. Mittels Fit des Planck‘schen Strahlungsgesetzes an die aufgenommene thermische Emission konnten 2D Temperaturgraphen erhalten werden. Eine Ortsauflösung von 1 µm und eine Zeitauflösung von 1 µs konnten realisiert werden. In Kombination mit Finite-Elemente-Simulationen wurde mit diesem Aufbau die Laserablation verschiedener Polymere untersucht. Dabei hat sich gezeigt, dass bei Polymeren mit einem Glasübergang im Temperaturbereich zwischen Raum- und Zerfallstemperatur, photomechanische Ablation stattfand. Die Ablationsschwelle lag für diese Polymere mehrere 10 K über dem Glasübergang, weit unter der Zerfallstemperatur aus thermogravimetrischen Experimenten mit typischen Heizraten von 10 K/min. Bei hohen Laserenergien und damit verbundenen hohen Temperaturen konnte dagegen thermischer Zerfall beobachtet werden. Ein Übergang des Mechanismus von photomechanischer Ablation zu Ablation durch thermischen Zerfall ergab sich bei Temperaturen deutlich über der Zerfallstemperatur des Polymers aus der Thermogravimetrie. Dies wurde bedingt durch die kurzen Reaktionszeiten des Laserexperiments in der Größenordnung der Pulsdauer und steht im Einklang mit dem Gesetz von Arrhenius. Polymere ohne Glasübergang im Heizbereich zeigten dagegen keine photomechanische Ablation, sondern ausschließlich thermischen Zerfall. Die Ablationsschwelle lag auch hier bei höheren Temperaturen, entsprechend dem Gesetz von Arrhenius. Hohe Temperaturen, mehrere 100 K über der Zerfallstemperatur, ergaben sich darüber hinaus bei hohen Laserenergien. Ein drastisches Überhitzen des Polymers, wie in der Literatur beschrieben, konnte nicht beobachtet werden. Experimentelle Befunde deuten vielmehr darauf hin, dass es sich bei dem heißen Material um thermische Zerfallsprodukte, Polymerfragmente, Monomer und Zerfallsprodukte des Monomers handelte bzw. das Temperaturprofil der Zerfallsreaktion selbst visualisiert wurde.
Resumo:
The emission of different harmful gases during the storage of solid fuels is a common phenomenon. The gases emitted during the heating process of those combustibles are the same as those emitted during combustion, mainly CO and CO2[1]. Nowadays, measurement of these emissions is mandatory. That is why in many industrial facilities different gas detectors are located to measure these gases. But it should be also useful if emissions could be predicted and the temperatures at the beginning of the emission process could be determined.
Resumo:
Numerical modelling is a valuable tool for simulating the fundamental processes that take place during a heating. The models presented in this paper have enabled a quantitative assessment of the effects of initial pile temperature, pile size and mass and coal particle size on the development of a heating. All of these parameters have a certain criticality in the coal self-heating process.
Resumo:
Changes in physical and chemical parameters (viscosity, total soluble solids and Hunter color parameters L*, a*, b*, chroma and hue angle) of água-mel were investigated throughout processing. Kinetic parameters for color change of heatprocessed água-mel were monitored. A zero-order kinetic model was applied to changes in L* and b*, while a* and C* were described using a first-order kinetic model. The heating process changed all three color parameters (L*, a*, b*), causing a shift toward the darker colors. Parameters L* decreased, while a*, b*, C* and hue angle (°h) increased during heating. Regarding changes in total soluble solids and in apparent viscosity, both fitted first-order kinetics. A direct relationship was found between the changes in these two parameters. The increase in both total soluble solids and viscosity affected a*, b* and C*. In addition, a flow diagram for the Portuguese água-mel production process has been established.
Resumo:
Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.
Resumo:
In order to turn more efficient the heating of class rooms in the lower floor of the old building of the University of Évora (a XVI century building), five drillings were organised inside the area of the university (Figure 1). The purpose was to use the temperature differential of groundwater in relation to air, by means of a heat exchanger, and use this process to heat the rooms using less energy, turning the heating process less expensive. The wells were drilled in fractured rocks (gneisses), and the purpose was to locate them at least around 100 m one from each other, whilst trying to have a hydraulic connection in-between. From the five initial wells, four were successful in terms of productivity, but just two of them (RA1 and RA2) proved to be hydraulically connected. The wells were equipped with screens for all their drilled depth (100 m), except for the first six meters and some two or three pipes of six meters each, to allow space for the installation for submersible pumps. The length of the installed screens guarantees a good efficiency of the system. In the wells with no connection, the heating system can work using each single well for abstraction and injection, but the process is much less efficient than in the cases where interaction between wells is possible through the rock’s fracture network.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
A indústria automóvel necessita aumentar a produtividade de forma sistemática, com vista à redução de custos e incremento da competitividade. A otimização dos produtos e processos é uma constante. O presente trabalho foi solicitado pela empresa FicoCables, do Grupo FICOSA, tendo em vista a otimização do processo de injeção de pequenas peças injetadas em ZAMAK, que constituem o bloqueio na extremidade de cada cabo metálico inserido nos automóveis para abertura da mala, portas, travão de mão, reservatório de combustível, capô, etc. A empresa possui cerca de 52 equipamentos de injeção de ZAMAK, cuja temperatura dos bicos era mantida com base numa chama de gás. Os sucessivos problemas de controlo do sistema ditaram uma mudança estratégica no aquecimento desses bicos, passando a ser usadas resistências elétricas anelares. No entanto, esta mudança veio a apresentar problemas inesperados, os quais se vieram inclusivamente a tornar em problemas de segurança, devido ao desgaste interior prematuro dos bicos, os quais apresentaram esmo problema de rotura. Paralelamente, todos os parâmetros relacionados com este processo de fabrico estavam também estudados de forma algo incipiente, pelo que se tornou necessário compreender e dissecar todas as variáveis relacionadas com o processo e implementar sistemas que impedissem o ajuste não controlado dos parâmetros por parte dos operadores. Também os moldes foram alvo de ações de melhoria, com vista a evitar problemas na zona de contacto do bico com o molde. O processo foi analisado em pormenor, permitindo um controlo muito mais apurado do mesmo. Os resultados fizeram sentir-se de forma imediata, graças ao trabalho desenvolvido neste estudo e à abertura demonstrada pela empresa para implementar todas as soluções propostas. O resultado final traduz-se num incremento significativo da segurança para os operadores, num controlo muito mais apurado de todos os parâmetros envolvidos no processo, numa maior garantia da qualidade nos produtos injetados em ZAMAK e em ganhos financeiros significativos para a empresa.
Resumo:
Tässä diplomityössä on suunniteltu ja toteutettu tuotannon optimointijärjestelmä Kotkan Energia Oy:n tuotantolaitoksille sekä osto- ja myyntisopimuksille. Työssä on kerätty ja laskettu Kotkan Energian tuotantolaitosten teknisiä ja suunnittelutietoja, sekä esitelty eri laitteiden ja tuotantolaitosten toimintaa. Lisäksi on käyty läpi kaukolämmön ja prosessihöyryn kulutusta, kulutuksien ennustamista ja tuotantojärjestelmiä, sekä sähkökauppaa ja laitoksilla käytettävien polttoaineiden ominaisuuksia ja hintoja. Voimalaitoksen laitteille on laskettu hyötysuhteet ja tuotteiden hinnat erilaisilla kuormilla. Laskelmien avulla on tehty polynomisovitteet laitteiden hyötysuhteille. Polynomisovitteet ja muu laitosten toiminnasta kerätty ja laskettu tieto on siirretty Kotkan Energian tietohallintopäällikön kanssa yhteistyössä kehitettyyn tietokonepohjaiseen optimointiohjelmaan. Myös optimoinnin teoriaa ja menetelmiä on käyty lyhyesti läpi. Optimointiohjelman avulla pystytään nyt laskemaan erilaisten kaukolämmön, prosessihöyryn ja sähkön hintojen ja kulutusten mukaisia optimaalisia ajotapoja Hovinsaaren voimalaitoksen tuotannolle ja hankintasopimuksille. Optimointiohjelmalla pyritään maksimoimaan energiantuotannon kokonaistuottoa tai minimoimaan tuotantokustannuksia annettujen ja ennustettujen alkuarvojen mukaisesti. Ohjelman antamia tuloksia voidaan käyttää apuna esimerkiksi tuotannon suunnittelussa ja budjetoinnissa. Laskelmat ja ohjelman kehittäminen ovat onnistuneet hyvin ja ohjelman käyttämisestä ja testaamisesta saadut tulokset vaikuttavat oikeanlaisilta ja luotettavilta. Optimointiohjelma on nyt käytössä ja jatkokehittely jatkuu myös diplomityön valmistumisen jälkeen.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
In-package pasteurization is the most used method for beer microbiological stabilization. The search for safer and better quality food has created a need to better understand the processes involved in producing it. However, little is known about the temperature and velocity profiles during the thermal processes of liquid foods in commercial packaging, which results in over-dimensioned processes to guarantee safety, decreasing the sensorial and nutritional characteristics of the product and increasing process costs. Simulations using Computational Fluid-Dynamics (CFD) have been used by various authors to evaluate those processes. The objective of the present paper was to evaluate the effect of packaging orientation in the pasteurization of beer in a commercial aluminum can using CFD. A heating process was simulated at 60 ºC up to 15 PUs (a conventional beer process, in which 1 Pasteurization Unit (PU) is equivalent to 1minute at 60 ºC). The temperature profile and convection current velocity along the process and the variation of the PUs were evaluated in relation to time considering the cans in the conventional, inverted, and horizontal positions. The temperature and velocity profiles were similar to those presented in the literature. The package position did not result in process improvement.