956 resultados para Heat Exchanger


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system for high utilization of LNG cold energy is proposed by use of process simulator. The proposed design is a closed loop system, and composed by a Hampson type heat exchanger, turbines, pumps and advanced humid air turbine (AHAT) or Gas turbine combined cycle (GTCC). Its heat sources are Boil-off gas and cooling water for AHAT or GTCC. The higher cold exergy recovery to power can be about 38 to 56% as compared to the existing cold power generation of about 20% with a Rankine cycle of a single component. The advantage of the proposed system is to reduce the number of heat exchangers. Furthermore, the environmental impact is minimized because the proposed design is a closed loop system. A life cycle comparative cost is calculated to demonstrate feasibility of the proposed design. The development of the Hampson type exchangers is expected to meet the key functional requirements and will result in much higher LNG cold exergy recovery and the overall system performance i.e. re-gasification. Additionally, the proposed design is expected to provide flexibility to meet different gas pressure suited for the deregulation of energy system in Japan and higher reliability for an integrated boil-off gas system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study explored the effects of the double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The double counter twisted tapes were used as counter-swirl flow generators in the test section. The experiments were performed with double counter twisted tapes of four different twist ratios (y = 1.95, 3.85, 5.92 and 7.75) using air as the testing fluid in a circular tube turbulent flow regime where the Reynolds number was varied from 6950 to 50,050. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing twist ratio. The results also revealed that the heat transfer rate in the tube fitted with double counter twisted tape was significantly increased with corresponding increase in pressure drop. In the range of the present work, heat transfer rate and friction factor were obtained to be around 60 to 240% and 91 to 286% higher than those of the plain tube values, respectively. The maximum thermal enhancement efficiency of 1.34 was achieved by the use of double counter twisted tapes at constant blower power. In addition, the empirical correlations for the Nusselt number, friction factor and thermal enhancement efficiency were also developed, based on the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat exchanger design plays a significant role in the performance of solid state hydrogen storage device. In the present study, a cylindrical hydrogen storage device with an embedded annular heat exchanger tube with radial circular copper fins, is considered. A 3-D mathematical model of the storage device is developed to investigate the sorption performance of metal hydride (MH). A prototype of the device is fabricated for 1 kg of MH alloy, LaNi5, and tested at constant supply pressure of hydrogen, validating the simulation results. Absorption characteristics of storage device have been examined by varying different operating parameters such as hydrogen supply pressure and cooling fluid temperature and velocity. Absorption process is completed in 18 min when these parameters are 15 bar, 298 K and 1 m/s respectively. A study of geometric parameters of copper fins (such as perforation, number and thickness of fin) has been carried out to investigate their effects on absorption process. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is focused on the demonstration of the advantages of miniaturized reactor systems which are essential for processes where potential for considerable heat transfer intensification exists as well as for kinetic studies of highly exothermic reactions at near-isothermal conditions. The heat transfer characteristics of four different cross-flow designs of a microstructured reactor/heat-exchanger (MRHE) were studied by CFD simulation using ammonia oxidation on a platinum catalyst as a model reaction. An appropriate distribution of the nitrogen flow used as a coolant can decrease drastically the axial temperature gradient in the reaction channels. In case of a microreactor made of a highly conductive material, the temperature non-uniformity in the reactor is strongly dependent on the distance between the reaction and cooling channels. Appropriate design of a single periodic reactor/heat-exchanger unit, combined with a non-uniform inlet coolant distribution, reduces the temperature gradients in the complete reactor to less than 4degreesC, even at conditions corresponding to an adiabatic temperature rise of about 1400degreesC, which are generally not accessible in conventional reactors because of the danger of runaway reactions. To obtain the required coolant flow distribution, an optimization study was performed to acquire the particular geometry of the inlet and outlet chambers in the microreactor/heat-exchanger. The predicted temperature profiles are in good agreement with experimental data from temperature sensors located along the reactant and coolant flows. The results demonstrate the clear potential of microstructured devices as reliable instruments for kinetic research as well as for proper heat management in the case of highly exothermic reactions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of an aluminum-based microstructured reactor/heat-exchanger for measuring reaction kinetics in the explosive region is presented. Platinum-catalyzed ammonia oxidation was chosen as a test reaction to demonstrate the feasibility of the method. The reaction kinetics was investigated in a wide range of conditions [NH3 partial pressure: 0.03-0.20 atm, O-2 partial pressure: 0.10-0.88atm; reactant flow 2000-3000 cm(3) min(-1) (STP); temperature 240-360degreesC] over a supported Pt/Al2O3 catalyst (mass of Al2O3 layer in the reactor, 1.95 mg; Pt/Al molar ratio, 0.71; Pt dispersion, 20%). The maximum temperature non-uniformity in the microstructured reactor was ca. 5degreesC, even at conditions corresponding to an adiabatic temperature rise of 1400degreesC. Based on the data obtained, a previous kinetic model for ammonia oxidation was extended. The modified 13-step model describes the data in a considerably wider range of conditions including those with high ammonia loadings and high reaction temperatures. The results indicate the large potential of microstructured devices as reliable tools for kinetic research of highly exothermic reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to determine the influence of inclining the heat exchanger relative to the fan in a forced draught air-cooled heat exchanger. Since inclination increases plenum depth, the effect of inclination is also compared with increasing plenum depth without inclination. The experimental study shows that inclination improves thermal performance by only 0.5%, when compared with a baseline non-inclined case with a shallow plenum. Similarly, increasing plenum depth without inclination has a thermal performance benefit of approximately 1%. The numerical study shows that, as the heat exchanger is inclined, the low velocity core at the centre of the heat exchanger moves to one side.