997 resultados para Heat Diffusion
Resumo:
The concept of differentiation and integration to non-integer order has its origins in the seventeen century. However, only in the second-half of the twenty century appeared the first applications related to the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated and compared. Simulations are presented assessing the performance of the proposed fractional-order algorithms.
Resumo:
In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.
Resumo:
The differentiation of non-integer order has its origin in the seventeenth century, but only in the last two decades appeared the first applications in the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated namely the fractional PID and the Smith predictor. Extensive simulations are presented assessing the performance of the proposed fractional-order algorithms.
Resumo:
Laminar forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumption used in this work is a laminar flow of a power flow inside elliptical tube, under a boundary condition of first kind with constant physical properties and negligible axial heat diffusion (high Peclet number). To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number and the average Nusselt number for various cross-section aspect ratios. (C) 2006 Elsevier. SAS. All rights reserved.
Resumo:
A comprehensive probabilistic model for simulating microstructure formation and evolution during solidification has been developed, based on coupling a Finite Differential Method (FDM) for macroscopic modelling of heat diffusion to a modified Cellular Automaton (mCA) for microscopic modelling of nucleation, growth of microstructures and solute diffusion. The mCA model is similar to Nastac's model for handling solute redistribution in the liquid and solid phases, curvature and growth anisotropy, but differs in the treatment of nucleation and growth. The aim is to improve understanding of the relationship between the solidification conditions and microstructure formation and evolution. A numerical algorithm used for FDM and mCA was developed. At each coarse scale, temperatures at FDM nodes were calculated while nucleation-growth simulation was done at a finer scale, with the temperature at the cell locations being interpolated from those at the coarser volumes. This model takes account of thermal, curvature and solute diffusion effects. Therefore, it can not only simulate microstructures of alloys both on the scale of grain size (macroscopic level) and the dendrite tip length (mesoscopic level), but also investigate nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies. The calculated results are compared with values of grain sizes and solidification morphologies of microstructures obtained from a set of casting experiments of Al-Si alloys in graphite crucibles.
Resumo:
The advantageous use of fractional calculus (FC) in the modeling and control of many dynamical systems has been recognized. In this paper, we study the control of a heat diffusion system based on the application of the FC concepts. Several algorithms are investigated and compared, when integrated within a Smith predictor control structure. Simulations are presented assessing the performance of the proposed fractional algorithms.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
Fractional Calculus FC goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of system dynamics and control. In this perspective, this paper investigates the use of FC in the fields of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
Today satellites propulsion is based on the use of monopropellant and/or bipropellant chemical systems. The maneuvering of satellite is based on the hydrazine decomposition micropropulsors catalyzed by metallic iridium supported on g-alumina. This reaction is a surface reaction and is strongly exothermic and implies that the operation of the micropropulsor is controlled by the mass and heat diffusions. For this reason and for the fact that the propulsor operation is frequently in pulsed regime, the catalyst should support high pressure and temperature variations within a short time period. The performance and the durability of the commercial catalyst are jeopardized by the low thermal conductivity of the alumina. The low thermal conductivity of the alumina support restricts the heat diffusion and leads to the formation of hot spots on the catalyst surface causing the metal sintering and/or fractures of the support, resulting in loss of the activity and catalyst destruction. This work presents the synthesis and characterization of new carbon composite support for the active element iridium, in substitution of the commercial catalysts alumina based support. These supports are constituted of carbon nanofibers (30 to 40 nm diameter) supported on a macroscopic carbon felt. These materials present high thermal conductivity and mechanical resistance, as well as the easiness to be shaped with different macroscopic shapes. The mechanical stability and the performance of the iridium supported on the carbon composite support, evaluated in a laboratory scale test in hydrazine decomposition reaction, are superior compared to the commercial catalyst.
Resumo:
Dual beam mode-matched thermal lens method has been employed to measure the heat diffusion in nanofluid of silver with various volumes of rhodamine 6G, both dispersed in water. The important observation is an indication of temperature dependent diffusivity and that the overall heat diffusion is slower in the chemically prepared Ag sol compared to that of water. The experimental results can be explained assuming that Brownian motion is the main mechanism of heat transfer under the present experimental conditions. Light induced aggregation of the nanoparticles can also result in an anomalous diffusion behavior.
Resumo:
An open cell photoacoustic (PA) configuration has been employed to evaluate the thermal diffusivity of intrinsic InP as well as InP doped with tin and iron. Thermal diffusivity data have been evaluated from variation of phase of PA signal as a function of modulation frequency. In doped samples, we observe a reduced value for thermal diffusivity in comparison with intrinsic InP. We also observed that, while the phase of the PA signal varies linearly with the square root of chopping frequency for doped samples, the intrinsic material does not exhibit such behaviour in the experimental frequency range. These results have been interpreted in terms of the heat generation and phonon assisted heat diffusion mechanisms in semiconductors.
Resumo:
We discuss an open photoacoustic cell study on sulfer-doped n-type InP wafer. The thermal diffusivity of the sample is evaluated from the phase data associated with the photoacoustic signal as a function of the modulation frequency under heat transmission configuration. Analysis is made on the basis of the Rosencwaig-Gersho theory and the results are compared with those from earlier reported photoacoustic studies of semiconductors. Our investigation clearly indicates that the instantaneous thermalization process is the major heat diffusion mechanism responsible for the photoacoustic signal generation in an InP sample.
Resumo:
An application of photoacoustic technique is developed for determining the thermal diffusivity coefficient and the thermal conductivity of transparent materials. The backing material which supports the sample is made optically opaque, i.e., it entirely absorbs the incident light, and the converted heat diffuses through the sample heating the gas in contact with its opposite surface. The method is illustrated by fitting voltage amplitude and phase signals versus the chopping frequency in the photoacoustic cell, according to a theoretical model of heat diffusion. Thermal parameters obtained for three polymers compare very well with results from the literature. (C) 1995 American Institute of Physics.
Resumo:
In this paper we consider a three-dimensional heat diffusion model to explain the growth of oxide films which takes place when a laser beam is shined on and heats a metallic layer deposited on a glass substrate in a normal atmospheric environment. In particular, we apply this model to the experimental results obtained for the dependence of the oxide layer thickness on the laser density power for growth of TiO2 films grown on Ti-covered glass slides. We show that there is a very good agreement between the experimental results and the theoretical predictions from our proposed three-dimensional model, improving the results obtained with the one-dimensional heat diffusion model previously reported. Our theoretical results also show the occurrence of surface cooling between consecutive laser pulses, and that the oxide track surface profile closely follows the spatial laser profile indicating that heat diffusive effects can be neglected in the growth of oxide films by laser heating. © 2001 Elsevier Science B.V.