837 resultados para Heart Diseases Nutritional aspects
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In daily medicine we often see patients complaining about thoracic pain. There is little doubt about the etiology in the most cases, but several patients continue posing diagnostic problems. There are different pathophysiological views to understand the situation of those patients, and it is important to determine their mental and psychological conditions. For this purpose, the focus on transference and countertransference phenomena has to be stressed. With these elements it will be possible to determine the diagnostic and therapeutic approach to those patients to reassure them and to justify investigations.
Resumo:
There is a general perception that the problem of tooth wear is increasing due to elements of the modern diet and due to increased retention of dentition into older age. Tooth wear encompasses erosion, abrasion and attrition of dental tissues – these often co-exist – yet in general, erosion is of more significance to the young and attrition is of more significance to the older population. Diet plays a significant role in the aetiology of tooth wear and likewise advanced tooth wear in older age may impose dietary restrictions with consequences for dietary intake and nutritional status. There is a need to increase the awareness of the disease of tooth wear and the associated nutritional problems. At present, the aetiology of tooth wear is poorly understood – especially with respect to the role of diet. Clearer information on how best to measure and monitor the incidence and prevalence is needed in order to obtain longitudinal data on trends in tooth wear and to monitor the factors that contribute to this condition. These issues will be addressed in the following presentations: 1) What is tooth wear? Aetiology, measurement and monitoring, 2) The role of diet in the aetiology of dental erosion, 3) Groups at increased risk of tooth wear: Eating disorders, ‘dieters' sportsmen and those with impairments, 4) Tooth wear in older adults: nutritional implications. In summary this symposium seeks to: 1) increase awareness of the disease of tooth wear, and its associated nutritional problems 2) increase understanding of the aetiology of tooth wear, especially the dietary role, 3) provide information on how to measure and monitor tooth wear, 4) highlight future research requirements in the area of tooth wear and diet.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Cancer and cardio-vascular diseases are the leading causes of death world-wide. Caused by systemic genetic and molecular disruptions in cells, these disorders are the manifestation of profound disturbance of normal cellular homeostasis. People suffering or at high risk for these disorders need early diagnosis and personalized therapeutic intervention. Successful implementation of such clinical measures can significantly improve global health. However, development of effective therapies is hindered by the challenges in identifying genetic and molecular determinants of the onset of diseases; and in cases where therapies already exist, the main challenge is to identify molecular determinants that drive resistance to the therapies. Due to the progress in sequencing technologies, the access to a large genome-wide biological data is now extended far beyond few experimental labs to the global research community. The unprecedented availability of the data has revolutionized the capabilities of computational researchers, enabling them to collaboratively address the long standing problems from many different perspectives. Likewise, this thesis tackles the two main public health related challenges using data driven approaches. Numerous association studies have been proposed to identify genomic variants that determine disease. However, their clinical utility remains limited due to their inability to distinguish causal variants from associated variants. In the presented thesis, we first propose a simple scheme that improves association studies in supervised fashion and has shown its applicability in identifying genomic regulatory variants associated with hypertension. Next, we propose a coupled Bayesian regression approach -- eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combinations of regulatory genomic variants that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance in samples, but also predicts gene expression more accurately than other methods. We demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation, particularly those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. The challenge of identifying molecular determinants of cancer resistance so far could only be dealt with labor intensive and costly experimental studies, and in case of experimental drugs such studies are infeasible. Here we take a fundamentally different data driven approach to understand the evolving landscape of emerging resistance. We introduce a novel class of genetic interactions termed synthetic rescues (SR) in cancer, which denotes a functional interaction between two genes where a change in the activity of one vulnerable gene (which may be a target of a cancer drug) is lethal, but subsequently altered activity of its partner rescuer gene restores cell viability. Next we describe a comprehensive computational framework --termed INCISOR-- for identifying SR underlying cancer resistance. Applying INCISOR to mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data, we identified the first pan-cancer SR networks, composed of interactions common to many cancer types. We experimentally test and validate a subset of these interactions involving the master regulator gene mTOR. We find that rescuer genes become increasingly activated as breast cancer progresses, testifying to pervasive ongoing rescue processes. We show that SRs can be utilized to successfully predict patients' survival and response to the majority of current cancer drugs, and importantly, for predicting the emergence of drug resistance from the initial tumor biopsy. Our analysis suggests a potential new strategy for enhancing the effectiveness of existing cancer therapies by targeting their rescuer genes to counteract resistance. The thesis provides statistical frameworks that can harness ever increasing high throughput genomic data to address challenges in determining the molecular underpinnings of hypertension, cardiovascular disease and cancer resistance. We discover novel molecular mechanistic insights that will advance the progress in early disease prevention and personalized therapeutics. Our analyses sheds light on the fundamental biological understanding of gene regulation and interaction, and opens up exciting avenues of translational applications in risk prediction and therapeutics.
Resumo:
Tese de dout., Faculdade de Ciências do Mar e Ambiente, Univ. do Algarve, 2003
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB