934 resultados para HYPERBOLIC HIGHER ORDER EQUATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this paper is to derive long time estimates of the energy for the higher order hyperbolic equations with time-dependent coefficients. in particular, we estimate the energy in the hyperbolic zone of the extended phase space by means of a function f (t) which depends on the principal part and on the coefficients of the terms of order m - 1. Then we look for sufficient conditions that guarantee the same energy estimate from above in all the extended phase space. We call this class of estimates hyperbolic-like since the energy behavior is deeply depending on the hyperbolic structure of the equation. In some cases, these estimates produce a dissipative effect on the energy. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Diss., 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho apresentado no Congresso Nacional de Matemática Aplicada à Indústria, 18 a 21 de novembro de 2014, Caldas Novas - Goiás

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the partial resummation technique of Fokker-Planck terms for multivariable stochastic differential equations with colored noise. As an example, a model system of a Brownian particle with colored noise is studied. We prove that the asymmetric behavior found in analog simulations is due to higher-order terms which are left out in that technique. On the contrary, the systematic ¿-expansion approach can explain the analog results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the connections between Lagrangian and Hamiltonian formalisms constructed from aperhaps singularhigher-order Lagrangian, some geometric structures are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian formalisms, partial Ostrogradskiis transformations and unambiguous evolution operators connecting these spaces are intrinsically defined, and some of their properties studied. Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained from the Hamiltonian ones. Once the gauge transformations are taken into account, the true number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian formalisms, and also in all the intermediate formalisms herein defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=partial derivative F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification.