959 resultados para HUMAN LYMPHOCYTE-CULTURES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vitro effect of Paracoccidioides brasiliensis exoantigen on the human lymphocytes cell cycle and chromosomes was studied. Human peripheral blood lymphocyte cultures from ten healthy, white, non-smoking, non-related adult males (mean age 31·3 ± 8·2 years) were studied. Blood cultures were treated with three exoantigen concentrations (0·25, 2·50 and 10·00 μg ml -1). At least 1000 metaphases were analysed at each concentration, for evaluation of numerical and structural chromosome aberrations (cA) and 30 000 for mitotic index (MI). Among the treated cultures, statistically significant differences in the frequencies of MI and cA were not observed. Nevertheless, when compared with control cultures, they all showed a significantly lower frequency of MI and higher frequency of cA. It is suggested that the detected alterations were caused by the exoantigen, its fractions or its metabolites. © 1996 Informa UK Ltd All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blood cell lymphocyte chromosomes from untreated (UT) and clinically-cured (CC) patients with paracoccidioidomycosis and from healthy (control) people (CO) were studied. The frequency of aneuploid cells in the UT patients was higher than in the CC and CO individuals. The frequency of metaphase cells with premature centromere division was significantly higher in the UT than in the CC and CO group. No structural aberration and no statistically significant difference in the frequency of polyploidy was observed in the three groups studied. Our findings are indicative of an aneugenic (aneuploidy-inducing) action of infection by Paracoccidioides brasiliensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The incorporation of lipid emulsions in parenteral diets is a requirement for energy and essential fatty acid supply to critically ill patients. The most frequently used IV lipid emulsions (LE) are composed with long-chain triacylglycerols rich in omega-6 polyunsaturated fatty acids (PUFA) from soybean oil, but these LE promote lymphocyte and neutrophil death. A new emulsion containing 20% soybean oil and 80% olive oil rich in (omega-9 monounsaturated fatty acids (MUFA) has been hypothesized not to cause impairment of immune function. In this study, the toxicity of an olive oil-based emulsion (OOE) on lymphocytes and neutrophils from healthy volunteers was investigated. Methods: Twenty volunteers were recruited and blood was. collected before a 6-hour infusion of an OOE, immediately after infusion, and again 18 hours postinfusion. Lymphocytes and neutrophils were isolated by gradient density. The cells were studied immediately after isolation and after 24 hours or 48 hours in culture. The following determinations were carried out: triacylglycerol levels and fatty acid composition and levels in plasma, lymphocyte proliferation, production of reactive oxygen species, and parameters of lymphocyte and neutrophil death (viability, DNA fragmentation, phosphatidylserine externalization, mitochondrial depolarization, and neutral lipid accumulation). Results: OOE decreased lymphocyte proliferation, provoked lymphocyte necrosis, and had no effect on the proportion of viable neutrophils. The mechanism of cell death induced by OOE involved neutral lipid accumulation but had no effect on mitochondrial membrane depolarization. Conclusions: The OOE given as a single dose of 500 mL induced low toxicity to lymphocytes from healthy volunteers, probably by necrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bixin is the main carotenoid found in annatto seeds (Bixa orellana L.) and is responsible for their reddish-orange color. The antioxidant properties of this compound are associated with its ability to scavenge free radicals, which may reduce damage and protect tissues against toxicity caused by anticancer drugs such as cisplatin. In this study, the genotoxicity and antigenotoxicity of bixin on cisplatin-induced toxicity in PC12 cells was assessed. Cytotoxicity was evaluated using the mu assay, mutagenicity, genotoxicity, and protective effect of bixin were evaluated using the micronucleus test and comet assay. PC12 cells were treated with bixin (0.05, 0.08, and 0.10 mu g/mL), cisplatin (0.1 mu g/mL) or a combination of both bixin and cisplatin. Bixin was neither cytotoxic nor genotoxic compared to the controls. In the combined treatment bixin significantly reduced the percentage of DNA in tail and the frequency of micronuclei induced by cisplatin. This result suggests that bixin can function as a protective agent, reducing cisplatin-induced DNA damage in PC12 cells, and it is possible that this protection could also extend to neuronal cells. Further studies are being conducted to better understand the mechanisms involved in the activity of this protective agent prior to using it therapeutically. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chrysin is one of the natural flavonoids present in plants, and large amounts are present in honey and propolis. In addition to anticancer, antioxidation, and anti-inflammatory activities, chrysin has also been reported to be an inhibitor of aromatase, an enzyme converting testosterone into estrogen. The present study evaluated the mutagenicity of this flavonoid using micronucleus (MN) with HepG2 cells and Salmonella. Cell survival after exposure to different concentrations of chrysin was also determined using sulforhodamine B (SRB) colorimetric assay in HepG2 cells and the influence of this flavonoid on growth of cells in relation to the cell cycle and apoptosis. TheMN test showed that from 1 to 15 mu M of this flavonoid mutagenic activity was noted in HepG2 cells. The Salmonella assay demonstrated a positive response to the TA100 Salmonella strain in the presence or absence of S9, suggesting that this compound acted on DNA, inducing base pair substitution before or after metabolism via cytochrome P-450. The SRB assay illustrated that chrysin promoted growth inhibition of HepG2 cells in both periods studied (24 and 48 h). After 24 h of exposure it was noted that the most significant results were obtained with a concentration of 50 mu M, resulting in 83% inhibition and SubG0 percentage of 12%. After 48 h of incubation cell proliferation inhibition rates (97% at 50 mu M) were significantly higher. Our results showed that chrysin is a mutagenic and cytotoxic compound in cultured human HepG2 cells and Salmonella typhimurium. Although it is widely accepted that flavonoids are substances beneficial to health, one must evaluate the risk versus benefit relationship and concentrations of these substances to which an individual may be exposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of nanoparticles in food packaging has been proposed on the basis that it could improve protection of foods by, for example, reducing permeation of gases, minimizing odor loss, and increasing mechanical strength and thermal stability. Consequently, the impacts of such nanoparticles on organisms and on the environment need to be investigated to ensure their safe use. In an earlier study, Moura and others (2008a) described the effect of addition of chitosan (CS) and poly(methacrylic acid) (PMAA) nanoparticles on the mechanical properties, water vapor, and oxygen permeability of hydroxypropyl methylcellulose films used in food packaging. Here, the genotoxicity of different polymeric CS/PMAA nanoparticles (size 60, 82, and 111 nm) was evaluated at different concentration levels, using the Allium cepa chromosome damage test as well as cytogenetic tests employing human lymphocyte cultures. Test substrates were exposed to solutions containing nanoparticles at polymer mass concentrations of 1.8, 18, and 180 mg/L. Results showed no evidence of DNA damage caused by the nanoparticles (no significant numerical or structural changes were observed), however the 82 and 111 nm nanoparticles reduced mitotic index values at the highest concentration tested (180 mg/L), indicating that the nanoparticles were toxic to the cells used at this concentration. In the case of the 60 nm CS/PMAA nanoparticles, no significant changes in the mitotic index were observed at the concentration levels tested, indicating that these particles were not toxic. The techniques used show promising potential for application in tests of nanoparticle safety envisaging the future use of these materials in food packaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The prebiotic potential of oat samples was investigated by in vitro shaker-flask anaerobic fermentations with human fecal cultures. The oat bran fraction was obtained by debranning and was compared with other carbon sources such as whole oat flour, glucose, and fructo-oligosaccharide. The oat bran fraction showed a decrease in culturable anaerobes and clostridia and an increase in bifidobacteria and lactobacilli populations. A similar pattern was observed in fructo-oligosaccharide. Butyrate production was higher in oat bran compared to glucose and similar to that in fructo-oligosaccharide. Production of propionate was higher in the two oat media than in fructo-oligosaccharide and glucose, which can be used as energy source by the liver. This study suggests that the oat bran fraction obtained by debranning is digested by the gut ecosystem and increases the population of beneficial bacteria in the indigenous gut microbiota. This medium also provides an energy source preferred by colonocytes when it is metabolized by the gut flora.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)