935 resultados para HTS - Hough Transform Statistics
Resumo:
With the widespread proliferation of computers, many human activities entail the use of automatic image analysis. The basic features used for image analysis include color, texture, and shape. In this paper, we propose a new shape description method, called Hough Transform Statistics (HTS), which uses statistics from the Hough space to characterize the shape of objects or regions in digital images. A modified version of this method, called Hough Transform Statistics neighborhood (HTSn), is also presented. Experiments carried out on three popular public image databases showed that the HTS and HTSn descriptors are robust, since they presented precision-recall results much better than several other well-known shape description methods. When compared to Beam Angle Statistics (BAS) method, a shape description method that inspired their development, both the HTS and the HTSn methods presented inferior results regarding the precision-recall criterion, but superior results in the processing time and multiscale separability criteria. The linear complexity of the HTS and the HTSn algorithms, in contrast to BAS, make them more appropriate for shape analysis in high-resolution image retrieval tasks when very large databases are used, which are very common nowadays. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In this paper we propose a novel method for shape analysis called HTS (Hough Transform Statistics), which uses statistics from Hough Transform space in order to characterize the shape of objects in digital images. Experimental results showed that the HTS descriptor is robust and presents better accuracy than some traditional shape description methods. Furthermore, HTS algorithm has linear complexity, which is an important requirement for content based image retrieval from large databases. © 2013 IEEE.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Diversas atividades nos dias atuais podem ser beneficiadas pela da análise automatizada de imagens como o reconhecimento biométrico de pessoas, a busca de imagens por conteúdo e o diagnóstico médico. Dentre as principais características que podem ser analisadas em uma imagem a fim de obter informações sobre seu conteúdo encontra-se a forma de objetos e regiões da mesma. Neste trabalho propõe-se um novo descritor de formas denominado HTS (Hough Transform Statistics) o qual se baseia no espaço de Hough para representar e reconhecer objetos em imagens por suas formas. Os resultados obtidos sobre algumas bases de imagens públicas mostram que o HTS, além de apresentar altas taxas de acerto, é muito rápido. Discute-se também uma adaptação na etapa de extração de características do descritor a qual fez com que os resultados melhorassem bastante sem deixar o método muito mais lento.
Resumo:
Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.
Resumo:
Despite the efficacy of minutia-based fingerprint matching techniques for good-quality images captured by optical sensors, minutia-based techniques do not often perform so well on poor-quality images or fingerprint images captured by small solid-state sensors. Solid-state fingerprint sensors are being increasingly deployed in a wide range of applications for user authentication purposes. Therefore, it is necessary to develop new fingerprint-matching techniques that utilize other features to deal with fingerprint images captured by solid-state sensors. This paper presents a new fingerprint matching technique based on fingerprint ridge features. This technique was assessed on the MSU-VERIDICOM database, which consists of fingerprint impressions obtained from 160 users (4 impressions per finger) using a solid-state sensor. The combination of ridge-based matching scores computed by the proposed ridge-based technique with minutia-based matching scores leads to a reduction of the false non-match rate by approximately 1.7% at a false match rate of 0.1%. © 2005 IEEE.
Resumo:
Paper submitted to International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP), Barcelona, España, 2003.
Resumo:
Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.
Resumo:
The paper deals with the generalisations of the Hough Transform making it the mean for analysing uncertainty. Some results related Hough Transform for Euclidean spaces are represented. These latter use the powerful means of the Generalised Inverse for description the Transform by itself as well as its Accumulator Function.
Resumo:
ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.
Resumo:
O estudo do movimento pulmonar é assunto de grande interesse na área médica. A observação direta do mesmo é inviável, uma vez que o pulmão colapsa quando a caixa torácica é aberta. Dentre os meios de observação indireta, escolheu-se o imageamento por ressonância magnética em respiração livre e sem uso de nenhum gás para melhorar o contraste ou qualquer informação de sincronismo. Esta escolha propõe diversos desafios, como: a superar a alta variação na qualidade das imagens, que é baixa, em geral, e a suscetibilidade a artefatos, entre outras limitações a serem superadas. Imagens de Tomografia Computadorizada apresentam melhor qualidade e menor tempo de aquisição, mas expõem o paciente a níveis consideráveis de radiação ionizante. É apresentada uma metodologia para segmentação do pulmão, produzindo um conjunto de pontos coordenados. Isto é feito através do processamento temporal da sequência de imagens de RM. Este processamento consiste nas seguintes etapas: geração de imagens temporais (2DSTI), transformada de Hough modificada, algoritmo de contornos ativos e geração de silhueta. A partir de um dado ponto, denominado centro de rotação, são geradas diversas imagens temporais com orientações variadas. É proposta uma formulação modificada da transformada de Hough para determinar curvas parametrizadas que sejam síncronas ao movimento diafragmático, chamados movimentos respiratórios. Também são utilizadas máscaras para delimitar o domínio de aplicação da transformada de Hough. São obtidos movimentos respiratórios que são suavizados pelo algoritmo de contornos ativos e, assim, permitem a geração de contornos para cada quadro pertencente a sequência e, portanto, de uma silhueta do pulmão para cada sequência.