945 resultados para HOST-SPECIFICITY
Resumo:
Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen. © 2008 SGM.
Resumo:
In this study, we have identified the possible genetic factors responsible for fowl-adaptation of Salmonella enterica serovar Gallinarum (S. Gallinarum). By comparing the genes related to Salmonella pathogenicity islands (SPI) of S. Gallinarum with those of Salmonella enterica serovar Enteritidis (S. Enteritidis) we have identified twenty-four positively selected genes. Our results suggest that the genes encoding the structural components of SPI-2 encoded type three secretion apparatus (TTSS) and the effector proteins that are secreted via SPI-1 encoded TTSS have evolved under positive selection pressure in these serovars. We propose that these positively selected genes play important roles in conferring different host-specificities to S. Gallinarum and S. Enteritidis.
Resumo:
Hendersonia osteospermi was found for the first time in Australia on leaf spots of the introduced invasive plant Chrysanthemoides monilifera ssp. rotundata (bitou bush) in coastal regions of New South Wales. Pathogenicity tests on species from 11 tribes in the family Asteraceae, demonstrated that H. osteospermi caused severe necrosis on leaves and stems of C. monilifera ssp. rotundata and its congener C. monilifera ssp. monilifera (boneseed). Small necrotic spots also developed on Osteospermum fruticosum and Dimorphotheca cuneata in the Calenduleae and on Helianthus annuus (sunflower) in the Heliantheae. None of the other plant species tested developed leaf spots, although H. osteospermi was re-isolated from senescent leaves of Cynara scolymus (globe artichoke) in the Cynareae and Vernonia cinerea in the Vernonieae. Single ascospores from ascomata of a Pleospora-like fungus found on diseased stems of bitou bush produced H. osteospermi in culture, which proved the anamorph/teleomorph connection. The ITS region of both a single-ascospore isolate and a single-conidium isolate were sequenced and found to be identical. The taxonomic status of H. osteospermi is re-examined and Austropleospora osteospermi gen. et sp. nov. is described as its teleomorph based on morphology, host range tests and DNA sequence analysis. The potential of A. osteospermi for the biological control of bitou bush and boneseed in Australia is discussed.
Resumo:
Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.
Resumo:
The gall fly Cecidochares connexa (Diptera: Tephritidae) is a potential biological control agent for Chromolaena odorata in Australia. Its host specificity was determined against 18 species in the tribe Eupatorieae (Family Asteraceae) in which C. odorata belongs, in quarantine in Brisbane, Australia. Oviposition occurred and flies developed on only C. odorata and Praxelis clematidea, both of which are in the subtribe Praxelinae. P. clematidea is considered a weed outside tropical America. In both multiple-species-minus-C. odorata choice tests and single-species no-choice tests, the mean number of galls/plant was significantly greater on C. odorata (48 and 41, respectively) than on P. clematidea (2 and 9, respectively). There were also significantly more adults emerging from C. odorata (mean 129 and 169, respectively) in the two types of tests than from P. clematidea (1 and 8, respectively). Paired choice, multiple generation (continuation) and time dependent tests further clarified the extent that C. connexa could develop on P. clematidea. In these tests, the mean number of galls formed and the mean number of emerging adults were consistently less for P. clematidea than C. odorata and populations of C. connexa could not be maintained on P. clematidea. Galls were not seen on any other plant species tested. This study supports the results of host specificity testing conducted in seven other countries and confirms that C. connexa poses little risk to other plant species in Australia. C. connexa has been released in 10 countries and an application seeking approval to release in Australia has been submitted to the Australian Government.
Resumo:
Papillomaviruses (PVs) are widespread pathogens. However, the extent of PV infections in bats remains largely unknown. This work represents the first comprehensive study of PVs in Iberian bats. We identified four novel PVs in the mucosa of free-ranging Eptesicus serotinus (EserPV1, EserPV2, and EserPV3) and Rhinolophus ferrumequinum (RferPV1) individuals and analyzed their phylogenetic relationships within the viral family. We further assessed their prevalence in different populations of E. serotinus and its close relative E. isabellinus. Although it is frequent to read that PVs co-evolve with their host, that PVs are highly species-specific, and that PVs do not usually recombine, our results suggest otherwise. First, strict virus-host co-evolution is rejected by the existence of five, distantly related bat PV lineages and by the lack of congruence between bats and bat PVs phylogenies. Second, the ability of EserPV2 and EserPV3 to infect two different bat species (E. serotinus and E. isabellinus) argues against strict host specificity. Finally, the description of a second noncoding region in the RferPV1 genome reinforces the view of an increased susceptibility to recombination in the E2-L2 genomic region. These findings prompt the question of whether the prevailing paradigms regarding PVs evolution should be reconsidered.
Resumo:
Papillomaviruses (PVs) are widespread pathogens. However, the extent of PV infections in bats remains largely unknown. This work represents the first comprehensive study of PVs in Iberian bats. We identified four novel PVs in the mucosa of free-ranging Eptesicus serotinus (EserPV1, EserPV2, and EserPV3) and Rhinolophus ferrumequinum (RferPV1) individuals and analyzed their phylogenetic relationships within the viral family. We further assessed their prevalence in different populations of E. serotinus and its close relative E. isabellinus. Although it is frequent to read that PVs co-evolve with their host, that PVs are highly species-specific, and that PVs do not usually recombine, our results suggest otherwise. First, strict virus-host co-evolution is rejected by the existence of five, distantly related bat PV lineages and by the lack of congruence between bats and bat PVs phylogenies. Second, the ability of EserPV2 and EserPV3 to infect two different bat species (E. serotinus and E. isabellinus) argues against strict host specificity. Finally, the description of a second noncoding region in the RferPV1 genome reinforces the view of an increased susceptibility to recombination in the E2-L2 genomic region. These findings prompt the question of whether the prevailing paradigms regarding PVs evolution should be reconsidered.
Evidence of host specificity and congruence between phylogenies of bitterling and freshwater mussels
Resumo:
Evidence of host specificity and congruence between phylogenies of bitterling and freshwater mussels. Zoological Studies 45(3): 428-434. Bitterling (Cyprinidae: Acheilognathinae) are freshwater fishes with a unique spawning relationship with freshwater mussels on whose gills they lay their eggs. During the breeding season of bitterling fishes, we collected 843 mussels belonging to 16 species from Lake Qinglan, central China and examined their gill chambers for the presence of bitterling larvae. Three species of bitterling larvae were identified; Acheilognathus tonkinensis, Ach. cf. meridianus, and Ach. barbatulus, in 3 species of mussel: Unio douglasiae, Lamprotula caveata, and L. tortuosa, suggesting host specialization. Using our own and other published data, we compared the respective phylogenies of bitterling and mussels, but failed to show clear congruence. However, broad specializations are evident, with Acheilognathus and Tanakia showing preferences for mussels with a relatively simple gill structure (Ableminae), and Rhodeus spp. showing preferences for mussels of the Anodontinae and Unioninae, which have more-complex gill structures.
Resumo:
Two species of aspidogastreans, namely Aspidogaster ijimai and A. conchicola, were studied by scanning electron microscopy. In nine lakes and an old river course, the Tian'ezhou oxbow, investigated in the flood plain of the Yangtze River, A. ijimai was obtained from the common carp (Cyprinus carpio) in three lakes, and A. conchicola from the black carp Mylopharyngodon piceus in three lakes and the oxbow. In none of the localities, however, were the two species found together. It is suggested that A. ijimai may be considered as a specialist parasite for the common carp, at least in the flood-plain lakes of the Yangtze River. The two parasites were similar in many aspects of their morphology. Their bodies can both be separated into a dorsal part and a ventral disc, with the body surface of the dorsal part elevated by transverse folds, and the disc subdivided into alveoli by transverse and longitudinal septa, although the number of alveoli was different in the two species. The depression on the ventral surface of the neck region was prominent for both species, and their ventral disc was covered densely with non-ciliated bulbous papillae. The position of mouth, osmo-regulatory pore and marginal organ was also similar for A. ijimai and A. conchicola. However, microridges in the trough of the folds in the neck region and numerous small pits on the upper part of the septa were found exclusively in A. ijimai, but uniciliated sensory papillae in A. conchicola.
Resumo:
The overall aim of the work presented was to evaluate soil health management with a specific focus on soil borne diseases of peas. For that purpose field experiments were carried out from 2009 until 2013 to assess crop performance and pathogen occurrence in the rotation winter pea-maize-winter wheat and if the application of composts can improve system performance. The winter peas were left untreated or inoculated with Phoma medicaginis, in the presence or absence of yard waste compost at rate of 5 t dry matter ha-1. A second application of compost was made to the winter wheat. Fusarium ssp. were isolated and identified from the roots of all three crops and the Ascochyta complex pathogens on peas. Bioassays were conducted under controlled conditions to assess susceptibility of two peas to Fusarium avenaceum, F. solani, P. medicaginis and Didymella pinodes and of nine plant species to F. avenaceum. Also, effects of compost applications and temperature on pea diseases were assessed. Application of composts overall stabilized crop performance but it did not lead to significant yield increases nor did it affect pathogen composition and occurrence. Phoma medicaginis was dominating the pathogen complex on peas. F. graminearum, F. culmorum, F. proliferatum, Microdochium nivale, F. crookwellense, F. sambucinum, F. oxysporum, F. avenaceum and F. equiseti were frequently isolated species from maize and winter wheat with no obvious influence of the pre-crop on the Fusarium species composition. The spring pea Santana was considerably more susceptible to the pathogens tested than the winter pea EFB33 in both sterile sand and non-sterilized field soil. F. avenaceum was the most aggressive pathogen, followed by P. medicaginis, D. pinodes, and F. solani. Aggressiveness of all pathogens was greatly reduced in non-sterile field soil. F. avenaceum caused severe symptoms on roots of all nine plant species tested. Especially susceptible were Trifolium repens, T. subterraneum, Brassica juncea and Sinapis alba in addition to peas. Reduction of growing temperatures from 19/16°C day/night to 16/12°C and 13/10°C did not affect the efficacy of compost. It reduced plant growth and slightly increased disease on EFB33 whereas the highest disease severity on Santana was observed at the highest temperature, 19/16°C. Application of 20% v/v of compost reduced disease on peas due to all four pathogens depending on pea variety, pathogen and growing media used. Suppression was also achieved with lower application rate of 3.5% v/v. Tests with γ sterilized compost suggest that the suppression of disease caused by Fusarium spp. is biological in origin, whereas chemical and physical properties of compost are playing an additional role in the suppression of disease caused by D. pinodes and P. medicaginis.
Resumo:
Several Alternaria cassiae isolates were recovered from diseased sicklepod plants (Senna obtusifolia) in the southern regions of Brazil. A representative isolate (Cenargen CG593) was tested for its host range under greenhouse conditions. The fungus promoted symptoms in sicklepod, cassava (Manihot dulce), tomato (Lycopersicon esculentum) and eggplant (Solanum melongena) when tested at a spore concentration of 10(6) spores ml(-1). When the plants were inoculated with a suspension of 10(5) spores ml(-1) and held at a dew period of 12 h (cassava) or 18 h (tomato and eggplant), the plants showed symptoms of the disease, but they recovered and continued their normal vegetative growth. These results show that the fungus A. cassiae is safe to use for the control of S. obtusifolia under Brazilian conditions, because it did not cause excessive damage in the three plants tested.
Resumo:
The trial was carried out to investigate parasite host specificity and to analyse the dynamics of infection with nematodes parasitizing sheep and catt:le raised together or separately in São Paulo state, Brazil, and, also to clarify doubts about the systematics of species of the genus Haemonchus on the basis of cytological and morphological studies. Ten steers and 32 ewes were randomly assigned to three paddocks (P), as follows: P1, 5 steers; P2, 5 steers and 16 ewes; and P3, 16 ewes. The animals remained on these paddocks in continuous grazing throughout the trial (1-yr period). Faecal exams and larvae counting on pasture were performed fortnightly. Once a month two tracer lambs were placed in each paddock, while two tracer calves were also placed, but only in the eighth month of the trial. All these animals were slaughtered for worm identification and counting. At the end of the trial, one steer and one ewe from P2, which showed high faecal egg counts, were also slaughtered for the same purpose. Nematodes identified cytogenetically as H. placei presented spicule hooks longer than those identified as H. contortus. The following distribution of parasites in cattle and sheep was observed: Bunostomum phlebotomum, H. similis, Mammomonogamus laryngeus strongly adapted to cattle, H. placei and Cooperia punctata more adapted to cattle than to sheep, Trichostrongylus axel and C. spatulata apparently more adapted to cattle, T. colubriformis strongly adapted to sheep, H. contortus more adapted to sheep than to cattle and C. curticei apparently more adapted to sheep. Cross-infection was shown to occur involving some species, however, with time the animals apparently eliminate the species that are not well adapted to them. Therefore, grazing management systems using cattle and sheep appear to be promising for worm control in southeastern Brazil. (C) 1997 Elsevier B.V. B.V.
Resumo:
We report biological data of two generations of Amblyomma triste in laboratory and compared the suitability of different host species. Infestations by larval and nymphal stages were performed on guinea pigs (Cavia porcellus), chickens (Gallus gallus), rats (Rattus norvegicus), rabbits (Oryctolagus cuniculus), wild mice (Calomys callosus), dogs (Canis familiaris) and capybaras (Hydrochaeris hydrochaeris). Infestations by adult ticks were performed on dogs, capybaras and rabbits. Tick developmental periods were observed in an incubator at 27degreesC and RH 90%. Guinea pigs were the most suitable hosts for larvae and nymphs, followed by chickens. The remaining host species were less suitable for immature ticks as fewer engorged ticks were recovered from them. Mean larval feeding periods varied from 3.8 to 4.7 d between different host species. Mean larval premolt periods ranged from 8.9 to 10.4 d. Nymphal mean feeding periods varied from 4.2 to 6.2 d for ticks fed on different host species. Premolt period of male nymphs (mean: 15.4 d) was significantly longer than that of female nymphs (14.7 d). Female nymphs were significantly heavier than male nymphs. The overall sex ratio of the adult ticks emerged from nymphs was 0.9:1 (M:F). Capybaras were the most suitable host for the tick adult stage as significantly more engorged females were recovered from them and these females were significantly heavier than those recovered from dogs or rabbits. The life cycle of A. triste in laboratory could be completed in an average period of 155 d. The potential role of guinea pigs, birds and capybaras, as hosts for A. triste in nature, is discussed.
Resumo:
We tested the host specificity of several parasitic Pseudacteon scuttle flies in South America with 23 species of ants in 13 genera. None of these ant species attracted Pseudacteon parasites except Solenopsis saevissima (F. Smith) and to a lesser extent Solenopsis geminata (Fab.). This result is encouraging because it indicates that the Pseudacteon flies tested in this study would not pose an ecological danger to other ant genera if these flies were introduced into the United States as classical biological control agents of imported fire ants. This prediction of host specificity will, of course, need to be validated with potential hosts in the United States before these flies can be released.