997 resultados para HETEROGENEOUS KINETICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RNA cleavage reaction catalyzed by the hairpin ribozyme shows biphasic kinetics, and chase experiments show that the slow phase of the reaction results from reversible substrate binding to an inactive conformational isomer. To investigate the structural basis for the heterogeneous kinetics, we have developed an enzymatic RNA modification method that selectively traps substrate bound to the inactive conformer and allows the two forms of the ribozyme-substrate complex to be separated and analyzed by using both physical and kinetic strategies. The inactive form of the complex was trapped by the addition of T4 RNA ligase to a cleavage reaction, resulting in covalent linkage of the 5′ end of the substrate to the 3′ end of the ribozyme and in selective and quantitative ablation of the slow kinetic phase of the reaction. This result indicates that the inactive form of the ribozyme-substrate complex can adopt a conformation in which helices 2 and 3 are coaxially stacked, whereas the active form does not have access to this conformation, because of a sharp bend at the helical junction that presumably is stabilized by inter-domain tertiary contacts required for catalytic activity. These results were used to improve the activity of the hairpin ribozyme by designing new interfaces between the two domains, one containing a non-nucleotidic orthobenzene linkage and the other replacing the two-way junction with a three-way junction. Each of these modified ribozymes preferentially adopts the active conformation and displays improved catalytic efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method for fabrication of nanometer-sized electrodes and tips suitable for scanning electrochemical microscopy (SECM) is reported. A fine etched Pt wire is coated with polyimide, which was produced by polymerization on the Pt surface initiated by heat. This method can prepare electrodes with effective radii varying from a few to hundreds of nanometers. Scanning electron microscopy, cyclic voltammetry, and SECM were used to characterize these electrodes. Well-defined steady-state voltammograms could be obtained in aqueous or in 1,2-dichloroethane solutions. Ibis method produced the nanoelectrodes with exposed Pit on the apex, and they can also be employed as the nanotips for SECM investigations. Different sizes of Pt nanotips made by this method were employed to evaluate the kinetics of the redox reaction of Ru(NH3)6(3+) on the surface of a large Pt electrode by SECM, and the standard rate constant kappa (o) of this system was calculated from the best fit of the SECM approach curve. This result is similar to the values obtained by analysis of the obtained voltammetric data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Among the heterogeneous catalysts materials made from niobium show up as an alternative to meet the demand of catalysts for biodiesel production. This study aims to evaluate the potential of a heterogeneous catalyst derived from a complex of niobium in the reaction of methyl esterification of oleic acid. The catalyst was synthesized after calcination at different temperatures of a niobium complex ((NH4)3[NbO(C2O4)3].H2O) generating a niobium oxide nanostructure with a different commercial niobium oxide used to synthesize the complex. The commercial niobium oxide, the complex niobium and niobium catalyst were characterized by thermogravimetry (TG and DTA), surface area analysis (BET), scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing the catalyst has researched morphological and crystallographic indicating a catalytic potential higher than that of commercial niobium oxide characteristics. Factorial with central composite design point, with three factors (calcination temperature, molar ratio of alcohol/oleic acid and mass percentage of catalyst) was performed. Noting that the optimal experimental point was given by the complex calcination temperature of 600°C, a molar ratio alcohol/oleic acid of 3.007/1 and the catalyst mass percentage of 7.998%, with a conversion of 22.44% oleic acid in methyl oleate to 60 min of reaction. We performed a composite linear and quadratic regression to determine an optimal statistical point of the reaction, the temperature of calcination of the complex at 450°C, the molar ratio of alcohol/oleic acid 3.3408/1 and mass percentage of catalyst of 7.6833% . Kinetic modeling to estimate parameters for heterogeneous catalysis it set well the experimental results with a final conversion of 85.01% with 42.38% of catalyst and without catalyst at 240 min reaction was performed. Allowing to evaluate the catalyst catalytic studied has the potential to be used in biodiesel production

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A kinetic study of the ultrasound-stimulated and acid-catalyzed sonohydrolysis of tetraethyl orthosilicate (TEOS) in solventless TEOS-water heterogeneous mixtures was carried out by means of a calorimetric method as a function of the ultrasound power. The hydrolysis reaction starts in acidulated heterogeneous water-TEOS mixtures after an induction period under ultrasonic stimulation. The ultrasound power seems to play a role on the dynamical coupling of the system originating a continuum upward shifting of the base line during the induction period of sonication. The rate in which the base line is upward shifted diminishes with the power. The best coupling between the ultrasound and the reactant heterogeneous mixtures for this experimental setup was found to occur at 50 W, for which the gelation time was found to be a minimum. The kinetics of the heterogeneous TEOS sonohydrolysis was studied on the basis of a dissolution and reaction modeling. The heterogeneous reaction pathway as deduced from the kinetic study was drawn in a ternary diagram as a function of the ultrasound power. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water insoluble poly(epsilon-caprolactone) (PCL) was micronized into narrowly distributed stable nanoparticles. The biodegradation of such PCL nanoparticles in the presence of the enzyme, Lipase PS, was monitored by using laser light scattering because the scattering intensity is directly related to the particle concentration. The PCL and enzyme concentration dependence of the biodegradation rate supports a heterogeneous catalytic kinetics in which we have introduced an additional equilibrium between the inactive and active enzyme/substrate complexes. The initial rate equation derived on the basis of this mechanism was used to successfully explain the influence of surfactant, pH and temperature on the enzymatic biodegradation. Our results confirmed that both the adsorption and the enzymatic catalysis were important for the biodegradation of the PCL nanoparticles. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Simple and powerful: The reaction kinetics at surfaces of heterogeneous catalysts is reformulated in terms of the involved chemical potentials. Based on this formulism, an approach of searching for good catalysts is proposed without recourse to extensive calculations of reaction barriers and detailed kinetic analyses. (see picture; R=reactant, I=surface intermediate, P=product, and =standard chemical potential).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using benzene hydrogenation over Pt/SiO2 as an industrially-relevant example, we show that state-of-the-art neutron total scattering methods spanning a wide Q-range now permit relevant time-resolved catalytic chemistry to be probed directly in situ within the pore of the catalyst. The method gives access to the reaction rates on both nanometric and atomic length scales, whilst simultaneously providing an atomistic structural viewpoint on the reaction mechanism itself.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An investigation was made on the adsorption and kinetics of photodegradation of potassium hydrogenphthalate in an aqueous suspension of TiO2. Two models, Langmuir and Freundlich, were used to describe the adsorption process and the model proposed by Langmuir-Hinshelwood (L-H) was employed to describe the kinetics of the photodecomposition reactions of hydrogenphthalate. The results of the adsorptions were fitted to the models proposed by Langmuir and Freundlich. Adsorption was found to be a function of the temperature, with adsorption capacity increasing from 2.4 to 4.5 mg/g when the temperature rose from 20 to 30 degrees C. The kinetic model indicates that the rate constant, k, of the first order reaction, is high in the 10.0 to 100 mg/l interval, which is coherent with the low value of the adsorption constant, K. The results fitted to the L-H model led to an equation that, within the range of concentrations studied here, theoretically allows one to evaluate the photodegradation rate. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.