260 resultados para HERPESVIRUS KSHV


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell division, which leads to the birth of two daughter cells, is essential for the growth and development of all organisms. The reproduction occurs in a series of events separated in time, designated as the cell cycle. The cell cycle progression is controlled by the activity of cyclin-dependent kinases (CDK). CDKs pair with cyclins to become catalytically active and phosphorylate a broad range of substrates required for cell cycle progression. In addition to cyclins, CDKs are regulated by inhibitory and activating phosphorylation events, binding to CDK-inhibitory proteins (CKI), and also by subcellular localization. The control of the CDK activity is crucial in preventing unscheduled progression of the cell cycle with mistakes having potentially hazardous consequences, such as uncontrolled proliferation of the cells, a hallmark of cancer. The mammalian cell cycle is a target of several DNA tumor viruses that can deregulate the host s cell cycle with their viral oncoproteins. A human herpesvirus called Kaposi s sarcoma herpesvirus (KSHV) is implicated in the cause of Kaposi s sarcoma (KS) and lymphoproliferative diseases such as primary effusion lymphomas (PEL). KSHV has pirated several cell cycle regulatory genes that it uses to manipulate its host cell and to induce proliferation. Among these gene products is a cellular cyclin D homologue, called viral cyclin (v-cyclin) that can activate cellular CDKs leading to the phosphorylation of multiple target proteins. Intriguingly, PELs that are naturally infected with KSHV consistently express high levels of CDK inhibitor protein p27Kip1 and still proliferate actively. The aim of this study was to investigate v-cyclin complexes and their activity in PELs, and search for an explanation why CKIs, such as p27Kip1 and p21Cip1 are unable to inhibit cell proliferation in this type of lymphoma. In this study, we found that v-cyclin binds to p27Kip1 in PELs, and confirmed this novel interaction also in the overexpression models. We observed that p27Kip1 associated with v-cyclin was also phosphorylated by a v-cyclin-associated kinase and identified cellular CDK6 as the major kinase partner of v-cyclin responsible for this phosphorylation. Analysis of the p27Kip1 residues targeted by v-cyclin-CDK6 revealed that serine 10 (S10) is the major phosphorylation site during the latent phase of the KSHV replication cycle. This phosphorylation led to the relocalization of p27Kip1 to the cytoplasm, where it is unable to inhibit nuclear cyclin-CDK complexes. In the lytic phase of the viral replication cycle, the preferred phosphorylation site on p27Kip1 by v-cyclin-CDK6 changed to threonine 187 (T187). T187 phosphorylation has been shown to lead to ubiquitin-mediated degradation of p27Kip1 and downregulation of p27Kip1 was also observed here. v-cyclin was detected also in complex with p21Cip1, both in overexpression models and in PELs. Phosphorylation of p21Cip1 on serine 130 (S130) site by v-cyclin-CDK6 functionally inactivated p21Cip1 and led to the circumvention of G1 arrest induced by p21Cip1. Moreover, p21Cip1 phosphorylated by v-cyclin-associated kinase showed reduced binding to CDK2, which provides a plausible explanation why p21Cip1 is unable to inhibit cell cycle progression upon v-cyclin expression. Our findings clarify the mechanisms on how v-cyclin evades the inhibition of cell cycle inhibitors and suggests an explanation to the uncontrolled proliferation of KSHV-infected cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi's sarcoma herpesvirus (KSHV) is an oncogenic human virus and the causative agent of three human malignancies: Kaposi's sarcoma (KS), Multicentric Castleman's Disease (MCD), and primary effusion lymphoma (PEL). In tumors, KSHV establishes latent infection during which it produces no infectious particles. Latently infected cells can enter the lytic replication cycle, and upon provision of appropriate cellular signals, produce progeny virus. PEL, commonly described in patients with AIDS, represents a diffuse large-cell non-Hodgkin's lymphoma, with median survival time less than six months after diagnosis. As tumor suppressor gene TP53 mutations occur rarely in PEL, the aim of this thesis was to investigate whether non-genotoxic activation of the p53 pathway can eradicate malignant PEL cells. This thesis demonstrates that Nutlin-3, a small-molecule inhibitor of the p53-MDM2 interaction, efficiently restored p53 function in PEL cells, leading to cell cycle arrest and massive apoptosis. Furthermore, we found that KSHV infection activated DNA damage signaling, rendering the cells more sensitive to p53-dependent cell death. We also showed in vivo the therapeutic potential of p53 restoration that led to regression of subcutaneous and intraperitoneal PEL tumor xenografts without adversely affecting normal cells. Importantly, we demonstrated that in a small subset of intraperitoneal PEL tumors, spontaneous induction of viral reactivation dramatically impaired Nutlin-3-induced p53-mediated apoptosis. Accordingly, we found that elevated KSHV lytic transcripts correlated with PEL tumor burden in animals and that inhibition of viral reactivation in vitro restored cytotoxic activity of a small-molecule inhibitor of the p53-MDM2 interaction. Latency provides a unique opportunity for KSHV to escape host immune surveillance and to establish persistent infections. However, to maintain viral reservoirs and spread to other hosts, KSHV must be reactivated from latency and enter into the lytic growth phase. We showed that phosphorylation of nucleolar phosphoprotein nucleophosmin (NPM) by viral cyclin-CDK6 is critical for establishment and maintenance of the KSHV latency. In short, this study provides evidence that the switch between latent phase and lytic replication is a critical step that determines the outcome of viral infection and the pathogenesis of KSHV-induced malignancies. Our data may thus contribute to development of novel targeted therapies for intervention and treatment of KSHV-associated cancers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The patterns of antibodies against latent and lytic antigens of human herpesvirus 8 (HHV-8) were assessed using immunofluorescence assays of samples from 155 persons seropositive for HHV-8 seen at public health centers and 24 patients with Kaposi`s sarcoma (KS) from Mozambique. Of the 155 persons without KS, 48(31%) had antibodies against latent antigens only, 29 (18.7%) had antibodies against lytic antigens only, and 78 (50.3%) had antibodies against both types of antigen. The HHV-8 antibody titer tended to increase with age until age 40, after which it began to decrease. High titers of antibodies against latent and lytic antigens of HHV-8 were detected mostly in persons co-infected with HIV, and these increased titers could have a predictive value. All patients with KS except four patients who were seronegative for HHV-8 had elevated titers of HHV-8 antibodies, predominantly against latent antigens. The data suggest the potential for an increase in the development of KS in this endemic area for HHV-8. J. Med. Virol. 82:1576-1581, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We aimed to evaluate the frequency of Kaposi sarcoma (KS)-associated herpesvirus (KSHV) infection in KS lesions in patients from Brazil. In addition, expression of human bcl-2, cleaved caspase-3, and KSHV latency-associated nuclear antigen (LANA)-1 in tumors was evaluated using inummohistochemical analysis. We studied 64 KS cases, classified as follows: classical, 20 (31 %); iatrogenic, 2 (3 %); AIDS-associated, 25 (39%); and not otherwise specified (lack of information about HIV status), 17 (27%). KSHV was detected by polymerase chain reaction (PCR) in 61 cases (95%); 40 cases (63%) were KSHV+ by PCR and immunohistochemical analysis for LANA-L Immunoexpression of bcl-2 was detected in 47 cases (73%). Only a few cells in 15 cases (23%) of KS had demonstrable immunostaining for cleaved caspase-3. These results further support the association of KSHV with all KS forms. Cleaved caspase-3 in KS tumors was infrequent, which may reflect the inhibition of apoptosis owing to bcl-2 overexpression observed in the majority of KS tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi's sarcoma (KS) became a critical health issue with the emergence of acquired immunodeficiency syndrome (AIDS) in the 1980s. Four clinical-epidemiological forms of KS have been described: classical KS, endemic KS,iatrogenic KS, and AIDS-associated KS. In 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus type 8 was identified by Chang and colleagues, and has been detected worldwide at frequencies ranging from 80 to 100%. The aim of the present study was to evaluate the frequency of KSHV infection in KS lesions from HIV-positive and HIV-negative patients in Brazil, as well as to review the current knowledge about KS transmission and detection. For these purposes, DNA from 51 cases of KS was assessed by PCR: 20 (39.2%) cases of classical KS, 29 (56.9%) of AIDS-associated KS and 2 (3.9%) of iatrogenic KS. Most patients were males (7.5:1, M/F), and mean age was 47.9 years (SD = ± 18.7 years). As expected, HIV-positive KS patients were younger than patients with classical KS. On the other hand, patients with AIDS-associated KS have early lesions (patch and plaque) compared to classical KS patients (predominantly nodular lesions). This is assumed to be the result of the early diagnose of KS in the HIV-positive setting. KSHV infection was detected by PCR in almost all cases (48/51; 94.1%), irrespectively of the clinical-epidemiological form of KS. These results show that KSHV is associated with all forms of KS in Brazilian patients, a fact that supports the role of this virus in KS pathogenesis. © 2006 Brazilian Journal of Medical and Biological Research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Kaposi-associated Herpesvirus (KSHV) also known as Human Herpesvirus 8 (HHV-8) is associated with the development of Kaposi’s sarcoma (KS) and others limphoprolipheratives diseases such as Primary Effusion Lymphoma (PEL) and Multicentric Castleman Disease (MCD). Even though the virus is considered lymphotropic, it is able to infect others cell types such as macrophages, dendritic cells, endothelial cells, monocytes and fibroblasts. After infection, KSHV be latent expressing essential viral genes to its maintenance in a infected cell. However, in some circumstances may occur the reactivation of lytic cycle producing new viral particles. K1 protein of KSHV interferes in the cellular signaling inducing proliferation and supporting cellular transformation. K1 is encoded by viral ORF-K1, which shows high variability between different genotypes of KSHV. So far, it is not clear whether different isoforms of K1 have specific immunobiological features. The KSHV latency is maintained under strict control by the immune system supported by an adequate antigen presentation involving Human Leucocyte Antigen (HLA) class I and II. Polymorphisms of HLA class I and II genes confer an enormous variability in molecules that recognize a large amount of antigens, but also can increase the susceptibility to autoimmune diseases. Therefore, the present study aims to genotype HLA class I (A and B) and class II (DR and DQ) from volunteers to identify haplotypes that can provide better response to K1 epitopes of different KSHV genotypes. First of all, 20 volunteers were selected to genotype HLA genes. In our results we observed prevalence of certain HLA class I haplotypes as HLAA1, HLA-A2, HLA-A24, HLA-A26, HLA-B8, HLA-B18 e HLA-B44. After the in silico analysis using BIMAS and SYFPEITHI databases, we observed high scores for epitopes from the B genotype of KSHV, indicating...(Complete abstract click electronic access below)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi´s sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is a gammaherpesvirus essential for the development of all forms of Kaposi´s sarcoma (KS). The KSHV’s life cycle is basically divided into latent and lytic phases, which have distinct viral gene expression profiles. Some important oncogenic products of KSHV are expressed during the lytic phase, including the viral K1 protein. As an effect of interfer-ence with intracellular signaling, K1 expression increases proliferation and survival of KSHV-infected cells. Due to its high level of genetic variability compared to other re-gions of the viral genome, the K1-encoding ORF (ORF-K1) is commonly evaluated for KSHV genotyping. It remains unclear whether different viral genotypes have particular biological effects that might modify the KSHV oncogenicity. The present study aimed to contribute to the establishment of an experimental in vitro model for evaluation of the K1 protein from common KSHV genotypes. Recombinant expression vectors with the ORF-K1 from KSHV genotypes A, B and C were prepared by genetic cloning. The recombi-nant vectors pKSHVOK1 obtained by cloning were sequenced for structural validation. After that, HEK293 cell line was transfected with the recombinant vectors, and proteins were extracted for expression analysis by Western blot technique, for K1 functional vali-dation. Results showed that ORF-K1 vectors containing KSHV ORF-K1 from the A, B and C genotypes were produced and structurally validated by DNA sequencing. The K1 expression at the protein level was also confirmed by immunoblots using an antibody for FLAG detection, an epitope from the vector that binds to K1. Based on presented re-sults, it´s possible to conclude that the recombinant vectors will be able to be used in future studies of K1 protein biological properties from distinct KSHV genotypes

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a gammaherpesvirus etiologically linked to the development of Kaposi sarcoma, primary effusion lymphomas, and multicentric Castleman disease in humans. KSHV is unique among other human herpesviruses because of the elevated number of viral products that mimic human cellular proteins, such as a viral cyclin, a viral G protein-coupled receptor, anti-apoptotic proteins (e.g. v-bcl2 and v-FLIP), viral interferon regulatory factors, and CC chemokine viral homologues. Several KSHV products have oncogenic properties, including the transmembrane K1 glycoprotein. KSHV K1 is encoded in the viral ORFK1, which is the most variable portion of the viral genome, commonly used to discriminate among viral genotypes. The extracellular region of K1 has homology with the light chain of lambda immunoglobulin, and its cytoplasmic region contains an immunoreceptor tyrosine-based activation motif (ITAM). KSHV K1 ITAM activates several intracellular signaling pathways, notably PI3K/AKT. Consequently, K1 expression inhibits proapoptotic proteins and increases the life-span of KSHV-infected cells. Another remarkable effect of K1 activity is the production of inflammatory cytokines and proangiogenic factors, such as vascular endothelial growth factor. KSHV K1 immortalizes primary human endothelial cells and transforms rodent fibroblasts in vitro; moreover, K1 induces tumors in vivo in transgenic mice expressing this viral protein. This review aims to consolidate and discuss the current knowledge on this intriguing KSHV protein, focusing on activities of K1 that can contribute to the pathogenesis of KSHV-associated human cancers. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The K1 gene of Kaposi sarcoma-associated herpesvirus (KSHV) encodes a transmembrane glycoprotein bearing a functional immunoreceptor tyrosine-based activation motif (ITAM). Previously, we reported that the K1 protein induced plasmablastic lymphomas in K1 transgenic mice, and that these lymphomas showed enhanced Lyn kinase activity. Here, we report that systemic administration of the nuclear factor kappa B (NF-kappaB) inhibitor Bay 11-7085 or an anti-vascular endothelial growth factor (VEGF) antibody significantly reduced K1 lymphoma growth in nude mice. Furthermore, in KVL-1 cells, a cell line derived from a K1 lymphoma, inhibition of Lyn kinase activity by the Src kinase inhibitor PP2 decreased VEGF induction, NF-kappaB activity, and the cell proliferation index by 50% to 75%. In contrast, human B-cell lymphoma BJAB cells expressing K1, but not the ITAM sequence-deleted mutant K1, showed a marked increase in Lyn kinase activity with concomitant VEGF induction and NF-kappaB activation, indicating that ITAM sequences were required for the Lyn kinase-mediated activation of these factors. Our results suggested that K1-mediated constitutive Lyn kinase activation in K1 lymphoma cells is crucial for the production of VEGF and NF-kappaB activation, both strongly implicated in the development of KSHV-induced lymphoproliferative disorders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV) is a recently discovered DNA tumor virus that belongs to the gamma-herpesvirus subfamily. Though numerous studies on KSHV and other herpesviruses, in general, have revealed much about their multilayered organization and capsid structure, the herpesvirus capsid assembly and maturation pathway remains poorly understood. Structural variability or irregularity of the capsid internal scaffolding core and the lack of adequate tools to study such structures have presented major hurdles to earlier investigations employing more traditional cryo-electron microscopy (cryoEM) single particle reconstruction. In this study, we used cryo-electron tomography (cryoET) to obtain 3D reconstructions of individual KSHV capsids, allowing direct visualization of the capsid internal structures and systematic comparison of the scaffolding cores for the first time. We show that B-capsids are not a structurally homogenous group; rather, they represent an ensemble of "B-capsid-like" particles whose inner scaffolding is highly variable, possibly representing different intermediates existing during the KSHV capsid assembly and maturation. This information, taken together with previous observations, has allowed us to propose a detailed pathway of herpesvirus capsid assembly and maturation.