1000 resultados para HCL REACTION
Resumo:
The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.
Resumo:
The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Pt-ceria catalysts present different surface chemistries depending on the preparation method and the pretreatment. The catalytic behavior of Pt/CeO2 catalysts in the hydrodechlorination of trichloroethylene (TCE) to ethylene was examined as a function of the pretreatment conditions and the noble metal precursor salts. Using FTIR and X-ray photoelectron spectroscopy, significant differences were observed in the surface properties of Pt/CeO2 prepared from the H2PtCl6 precursor after different pretreatment procedures (i.e.. reduction or oxidation-reduction). These surface changes are related to chloride residues from the synthesis. Strong changes were observed in the selectivity of the catalysts to ethylene depending on the pretreatment conditions. The 0.5%Pt/CeO2 catalyst showed a 13% selectivity toward ethylene after reduction, whereas alter oxidation, followed by reduction, the selectivity increased up to 85% at the same conversion level. This effect was only observed when a chloride-containing precursor was used in the preparation. In this way, it is demonstrated that the use of a Cl-containing Pt precursor and an air treatment prior to reduction strongly improves the ethylene selectivity of Pt-CeO2 dechlorination catalysts. This can be explained by formation or a CeOCl phase during the synthesis that decomposes upon air tempering, producing oxygen vacancies on the ceria support. We propose that these oxygen vacancies are active for cleaving off Cl from the TCE. Pt then supplies II to clean-off Cl as HCl. Reaction of TCE on Pt produces rather ethane, so Pt may be partly Cl-poisoned for the hydrodechlorination reaction but not for II, dissociation or CO adsorption.
Resumo:
In this work, we report the construction of potential energy surfaces for the (3)A '' and (3)A' states of the system O(P-3) + HBr. These surfaces are based on extensive ab initio calculations employing the MRCI+Q/CBS+SO level of theory. The complete basis set energies were estimated from extrapolation of MRCI+Q/aug-cc-VnZ(-PP) (n = Q, 5) results and corrections due to spin-orbit effects obtained at the CASSCF/aug-cc-pVTZ(-PP) level of theory. These energies, calculated over a region of the configuration space relevant to the study of the reaction O(P-3) + HBr -> OH + Br, were used to generate functions based on the many-body expansion. The three-body potentials were interpolated using the reproducing kernel Hilbert space method. The resulting surface for the (3)A '' electronic state contains van der Waals minima on the entrance and exit channels and a transition state 6.55 kcal/mol higher than the reactants. This barrier height was then scaled to reproduce the value of 5.01 kcal/mol, which was estimated from coupled cluster benchmark calculations performed to include high-order and core-valence correlation, as well as scalar relativistic effects. The (3)A' surface was also scaled, based on the fact that in the collinear saddle point geometry these two electronic states are degenerate. The vibrationally adiabatic barrier heights are 3.44 kcal/mol for the (3)A '' and 4.16 kcal/mol for the (3)A' state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705428]
Resumo:
Reaction of the title compound (1a) with anhydrous MeOH-HCl gave 2-endo-(2,6-dimethoxyphenyl)-2-exo-methyl-5-methylbicyclo[3.2.1]octane-6,8-dione (3a), 1,5,14-timethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),9(11)-tetraen-17-one (4), 1,5-dimethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),8,14-pentaen-17-one (5), and 3,4,5,6-tetrahydro-2,7-dimethoxy-3,6-dimethyl-3,2,6-(13-oxopropan[1]yI[3]ylidene)-2H-1-benzoxocin (6). Structures assigned to compounds (3a), (4), and (6) are based on spectral data. The exo-tricyclic acetal structure (6) was further confirmed by the analysis of the 1H n.m.r. spectra of the isomeric alcohols (11) and (12), obtained by sodium borohydride reduction of (6).
Resumo:
A simplified dissolution and reaction modeling was employed to study the hydrolysis of heterogeneous tetraethoxysilane (TEOS)-water-HCl mixtures under ultrasound stimulation. The nominal pH was changed from 0.8 to 2.0. The acid specific hydrolysis rate constant was determined as k = 6.1 mol(-1) 1 min(-1) [H+](-1) at 39 degreesC, in good agreement with the literature. Along the heterogeneous step of the reaction, the ultrasound maintains an additional quantity of water under a virtual state of dissolution besides the water dissolved due to the homogenizing effect of the alcohol produced in the reaction. The forced virtually dissolved water is probably represented by water at the TEOS-water interface during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TEOS phase, while hydrolysis has not started yet, was evaluated as about 290 A. The HCl concentration accordingly increases the hydrolysis rate constant but its fundamental role on the immiscibility gap of the TEOS-water-ethanol system has not been unequivocally established. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this thesis, the kinetics of several alkyl, halogenated alkyl, and alkenyl free radical reactions with NO2, O2, Cl2, and HCl reactants were studied over a wide temperature range in time resolved conditions. Laser photolysis photoionisation mass spectrometer coupled to a flow reactor was the experimental method employed and this thesis present the first measurements performed with the experimental system constructed. During this thesis a great amount of work was devoted to the designing, building, testing, and improving the experimental apparatus. Carbon-centred free radicals were generated by the pulsed 193 or 248 nm photolysis of suitable precursors along the tubular reactor. The kinetics was studied under pseudo-first-order conditions using either He or N2 buffer gas. The temperature and pressure ranges employed were between 190 and 500 K, and 0.5 45 torr, respectively. The possible role of heterogeneous wall reactions was investigated employing reactor tubes with different sizes, i.e. to significantly vary the surface to volume ratio. In this thesis, significant new contributions to the kinetics of carbon-centred free radical reactions with nitrogen dioxide were obtained. Altogether eight substituted alkyl (CH2Cl, CHCl2, CCl3, CH2I, CH2Br, CHBr2, CHBrCl, and CHBrCH3) and two alkenyl (C2H3, C3H3) free radical reactions with NO2 were investigated as a function of temperature. The bimolecular rate coefficients of all these reactions were observed to possess negative temperature dependencies, while pressure dependencies were not noticed for any of these reactions. Halogen substitution was observed to moderately reduce the reactivity of substituted alkyl radicals in the reaction with NO2, while the resonance stabilisation of the alkenyl radical lowers its reactivity with respect to NO2 only slightly. Two reactions relevant to atmospheric chemistry, CH2Br + O2 and CH2I + O2, were also investigated. It was noticed that while CH2Br + O2 reaction shows pronounced pressure dependence, characteristic of peroxy radical formation, no such dependence was observed for the CH2I + O2 reaction. Observed primary products of the CH2I + O2 reaction were the I-atom and the IO radical. Kinetics of CH3 + HCl, CD3 + HCl, CH3 + DCl, and CD3 + DCl reactions were also studied. While all these reactions possess positive activation energies, in contrast to the other systems investigated in this thesis, the CH3 + HCl and CD3 + HCl reactions show a non-linear temperature dependency on the Arrhenius plot. The reactivity of substituted methyl radicals toward NO2 was observed to increase with decreasing electron affinity of the radical. The same trend was observed for the reactions of substituted methyl radicals with Cl2. It is proposed that interactions of frontier orbitals are responsible to these observations and Frontier Orbital Theory could be used to explain the observed reactivity trends of these highly exothermic reactions having reactant-like transition states.
Resumo:
X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.
Resumo:
Spironaphthalenones 1b–g on reaction with hydroxylamine hydrochloride gave the expected pyrrolotropones 2b–g. Furanotropone 6, postulated as an intermediate in the formation of pyrrolotropones, remained unchanged on reaction with hydroxylamine hydrochloride in ethanol. Reaction of unsymmetrical spironaphthalenones 1h–o with NH2OH.HCl gave the rearranged pyrrolotropones 2h–o.
Resumo:
Reaction of 1-methoxynaphthalene with 1-formylnaphthalene in presence of n-BuLi/TMEDA, followed by deoxygenation and demethylation gave the bisnaphthol 6. Oxidation of 6 with KOBr yielded the spironaphthalenones 4a-b and 5a-b. The spironaphthalenones 3a-c on reaction with NH2OH.HCl gave naphth[2,1-c]isoxazole derivatives 9a-c. While similar reaction of 4a-b gave the pyrrolotropones 11a-b, spironaphthalenones 5a-b afforded the naphth[1,2-c]isoxazole derivatives 12a-b.
Resumo:
Thermal decomposition of 1,2-dichloroethane (1,2-DCE) has been studied in the temperature range of 10501175 K behind reflected shock waves in a single pulse shock tube. The unimolecular elimination of HCl is found to be the major channel through which 1,2-DCE decomposes under these conditions. The rate constant for the unimolecular elimination of HCl from 1,2-dichloroethane is found to be 10(13.98+/-0.80) exp(-57.8+/-2.0/RT) s(-1), where the activation energy is given in kcal mol(-1) and is very close to that value for CH3CH2Cl (EC). Ab initio (HF and MP2) and DFT calculations have been carried out to find the activation barrier and the structure of the transition state for this reaction channel from both EC and 1,2-DCE. The preexponential factors calculated at various levels of theory (BF/6-311++G**, MP2/6-311++G**, and B3LYP/6-311++G**) are (approximate to10(15) s(-1)) significantly larger than the experimental results. If the torsional mode in the ground state is treated as free internal rotation the preexponential factors reduce significantly, giving excellent agreement with experimental values. The DFT results are in excellent (fortuitous?) agreement with the experimental value for activation energy for 1,2-DCE while the MP2 and HF results seem to overestimate the barrier. However, DFT results for EC is 4.5 kcal mol(-1) less than the previously reported experimental values. At all levels, theory predicts an increase in HCI elimination barrier on beta-Cl substitution on EC.