5 resultados para HBOT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic wounds are a significant socioeconomic problem for governments worldwide. Approximately 15% of people who suffer from diabetes will experience a lower-limb ulcer at some stage of their lives, and 24% of these wounds will ultimately result in amputation of the lower limb. Hyperbaric Oxygen Therapy (HBOT) has been shown to aid the healing of chronic wounds; however, the causal reasons for the improved healing remain unclear and hence current HBOT protocols remain empirical. Here we develop a three-species mathematical model of wound healing that is used to simulate the application of hyperbaric oxygen therapy in the treatment of wounds. Based on our modelling, we predict that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds. Furthermore, treatment should continue until healing is complete, and HBOT will not stimulate healing under all circumstances, leading us to conclude that finding the right protocol for an individual patient is crucial if HBOT is to be effective. We provide constraints that depend on the model parameters for the range of HBOT protocols that will stimulate healing. More specifically, we predict that patients with a poor arterial supply of oxygen, high consumption of oxygen by the wound tissue, chronically hypoxic wounds, and/or a dysfunctional endothelial cell response to oxygen are at risk of nonresponsiveness to HBOT. The work of this paper can, in some way, highlight which patients are most likely to respond well to HBOT (for example, those with a good arterial supply), and thus has the potential to assist in improving both the success rate and hence the costeffectiveness of this therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronicwounds fail to proceed through an orderly process to produce anatomic and functional integrity and are a significant socioeconomic problem. There is much debate about the best way to treat these wounds. In this thesis we review earlier mathematical models of angiogenesis and wound healing. Many of these models assume a chemotactic response of endothelial cells, the primary cell type involved in angiogenesis. Modelling this chemotactic response leads to a system of advection-dominated partial differential equations and we review numerical methods to solve these equations and argue that the finite volume method with flux limiting is best-suited to these problems. One treatment of chronic wounds that is shrouded with controversy is hyperbaric oxygen therapy (HBOT). There is currently no conclusive data showing that HBOT can assist chronic wound healing, but there has been some clinical success. In this thesis we use several mathematical models of wound healing to investigate the use of hyperbaric oxygen therapy to assist the healing process - a novel threespecies model and a more complex six-species model. The second model accounts formore of the biological phenomena but does not lend itself tomathematical analysis. Bothmodels are then used tomake predictions about the efficacy of hyperbaric oxygen therapy and the optimal treatment protocol. Based on our modelling, we are able to make several predictions including that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds, treatment should continue until healing is complete and finding the right protocol for an individual patient is crucial if HBOT is to be effective. Analysis of the models allows us to derive constraints for the range of HBOT protocols that will stimulate healing, which enables us to predict which patients are more likely to have a positive response to HBOT and thus has the potential to assist in improving both the success rate and thus the cost-effectiveness of this therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

and non-union of bony fractures has been proposed since 1966, little has been known about the effect of HBOT on bone marrow stem cells (BMSC). The aim of this study is to investigate the effect of HBO treatment on osteogenetic differentiation of BMSC and potential application in bone tissue engineering. Adhesive stromal cells harvested from bone marrow were characterized by mesenchymal differentiation potential, cell surface markers and their proliferation capacity. Mesenchymal stem cells, which demonstrated osteogenic, chondrogenic and adipogenic differentiation potential and expressed positively for CD 29, CD 44, CD 73, CD 90, CD 105, CD 166 and negatively for CD34 and CD 45, were selected and treated in a laboratory-scale HBO chamber using different oxygen pressures and exposure times. No obvious effect of HBO treatment on BMSC proliferation was noticed. However, cytotoxic effects of HBO were considerably less pronounced when cells were cultured in medium supplemented with 10% FBS in comparison to medium supplemented with 2% FCS, as was evaluated by WST-1 assay. Under HBO treatment, bone nodules were formed in three days, which was clearly revealed by Von Kossa staining. In contrasts, without HBO treatment, bone nodules were not detected until 9-12 days using the same inducing culture media. Calcium deposition was also significantly increased after three days of HBO treatments compared to no HBO treatment. In addition it was also found that oxygen played a direct role in the enhancement of BMSC osteogenic differentiation, which was independent of the effect of air pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conclusion. Hyperbaric oxygen treatment (HBOT) promoted an increase of the mean axonal diameter in the group evaluated 2 weeks after lesion induction, which suggests a more advanced regeneration process. However, the number of myelin nerve fibers of the facial nerve of the rabbits was similar when compared to the control and treatment groups, in both evaluation periods. Objective. To evaluate the effect of HBOT on the histological pattern of the facial nerve in rabbits exposed to a nerve crush injury. Materials and methods. Twenty rabbits were exposed to facial nerve crush injury. Ten rabbits received HBOT, 10 rabbits comprised the control group. The rabbits were sacrificed 2 and 4 weeks after the trauma. Qualitative morphological analysis, measurement of the external axonal diameters and myelin fiber count were carried out in an area of 185 000 mu m(2). Results. There was an increase in the area of the axons and thicker myelin in the 2 weeks treatment group in comparison with the control group. The mean diameter of the axons was of 2.34 mu m in the control group and of 2.81 mu m in the HBOT group, with statistically significant differences. The 2 week control group had a mean number of myelin fibers of 186 +/- 5.2664, and the HBOT group had a mean number of 2026.3 +/- 302; this was not statistically significant. The 4 week control group presented a mean of 2495.1 +/- 479 fibers and the HBOT group presented a mean of 2359.9 +/- 473; this was not statistically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Some ventilated intensive care unit (ICU) patients may experience reduced oxygenation following hyperbaric oxygen treatment (HBOT).

METHODS: In a prospective, single-centre, observational study, we documented changes in oxygenation and the need for associated changes in ventilator settings in 25 consecutive, mechanically ventilated ICU patients immediately post-treatment and 1, 2, 3 and 6 hours following 61 HBOT sessions. The primary outcome measure of oxygenation was the ratio of arterial partial pressure of oxygen (P(a)O2) against the level of inspired oxygen (F(i)O2), P(a)O2/F(i)O2.

RESULTS: Following HBOT, the P(a)O2/F(i)O2 ratio decreased by 27% on return to ICU (P < 0.001, 95% confidence intervals (CI) 20.6 to 34.2); 22% at 1 hour post-HBOT (P < 0.001, 95% CI 15.1 to 28.6); and 8% at 2 hours post (P = 0.03, 95% CI 0.8 to 14.4). The ratio showed no significant differences from pre-HBOT at 3 and 6 hours post-HBOT. P(a)O2/F(i)O2 ratio changes necessitated adjustments to ventilation parameters upon return to ICU following 30 of 61 HBOT sessions in 17 out of the 25 patients. The most common ventilation parameter altered was F(i)O2 (n = 20), increased by a mean of +0.17 (95% CI 0.11 to 0.23) above baseline for two hours following HBOT.

CONCLUSIONS: Following HBOT, oxygenation is reduced in a majority of mechanically ventilated ICU patients and requires temporary alterations to mechanical ventilation settings. Further study to identify predictive characteristics and to determine causation for those at risk of needing ventilation alterations is required.