611 resultados para HARDENING
Resumo:
Purpose: In the present work we consider our (in progress) spectroscopy study of zinc and iron phosphates under the influence external high pressure to determine zinc ion change coordination from tetrahedral to octahedral (or hexahedral) structure.----- Design/methodology/approach: The standard equipment is the optical high pressure cell with diamond (DAC). The DAC is assembled and then vibrational or electronic spectra are collected by mounting the cell in an infrared, Raman, EXAFS or UV-visible spectrometer.----- Findings: Mechanism by which zinc and iron methaphosphate material is transformed to glassy meta-phosphate is enhancing mechanical properties of tribofilm. The two decades of intensive study demonstrates that Zn (II) and Fe (III) ions participate to cross-link network under friction, hardening the phosphate.----- Research limitations/implications: Transition metal atoms with d orbital have flexible coordination numbers, for example zinc acts as a cross-linking agent increasing hardness, by changing coordination from tetrahedral to octahedral. Perhaps the external pressure effect on the [Zn–(O-P-)4 ] complex causes a transformation to an [Zn –(O-P-)6] grouping.----- Originality/value: This paper analyses high-pressure spectroscopy which has been applied for the investigation of 3D transition metal ions in solids. When studying pressure effects on coordination compounds structure, we can expect changes in ground electronic state (spin-crossovers), electronic spectra due to structural distortions (piezochromism), and changes in the ligand field causing shifts in the electronic transitions.
Resumo:
Dried plant food materials are one of the major contributors to the global food industry. Widening the fundamental understanding on different mechanisms of food material alterations during drying assists the development of novel dried food products and processing techniques. In this regard, case hardening is an important phenomenon, commonly observed during the drying processes of plant food materials, which significantly influences the product quality and process performance. In this work, a recent meshfree-based numerical model of the authors is further improved and used to simulate the influence of case hardening on shrinkage characteristics of plant tissues during drying. In order to model fluid and wall mechanisms in each cell, Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM) are used. The model is fundamentally more capable of simulating large deformation of multiphase materials, when compared with conventional grid-based modelling techniques such as Finite Element Methods (FEM) or Finite Difference Methods (FDM). Case hardening is implemented by maintaining distinct moisture levels in the different cell layers of a given tissue. In order to compare and investigate different factors influencing tissue deformations under case hardening, four different plant tissue varieties (apple, potato, carrot and grape) are studied. The simulation results indicate that the inner cells of any given tissue undergo limited shrinkage and cell wall wrinkling compared to the case hardened outer cell layers of the tissues. When comparing unique deformation characteristics of the different tissues, irrespective of the normalised moisture content, the cell size, cell fluid turgor pressure and cell wall characteristics influence the tissue response to case hardening.
Differential expression profiling of components associated with exoskeletal hardening in crustaceans
Resumo:
Background: Exoskeletal hardening in crustaceans can be attributed to mineralization and sclerotization of the organic matrix. Glycoproteins have been implicated in the calcification process of many matrices. Sclerotization, on the other hand, is catalysed by phenoloxidases, which also play a role in melanization and the immunological response in arthropods. Custom cDNA microarrays from Portunus pelagicus were used to identify genes possibly associated with the activation pathways involved in these processes. Results: Two genes potentially involved in the recognition of glycosylation, the C-type lectin receptor and the mannose-binding protein, were found to display molt cycle-related differential expression profiles. C-type lectin receptor up-regulation was found to coincide with periods associated with new uncalcified cuticle formation, while the up-regulation of mannose-binding protein occurred only in the post-molt stage, during which calcification takes place, implicating both in the regulation of calcification. Genes presumed to be involved in the phenoloxidase activation pathway that facilitates sclerotization also displayed molt cycle-related differential expression profiles. Members of the serine protease superfamily, trypsin-like and chymotrypsin-like, were up-regulated in the intermolt stage when compared to post-molt, while trypsin-like was also up-regulated in pre-molt compared to ecdysis. Additionally, up-regulation in pre- and intermolt stages was observed by transcripts encoding other phenoloxidase activators including the putative antibacterial protein carcinin-like, and clotting protein precursor-like. Furthermore, hemocyanin, itself with phenoloxidase activity, displayed an identical expression pattern to that of the phenoloxidase activators, i.e. up-regulation in pre- and intermolt. Conclusion: Cuticle hardening in crustaceans is a complex process that is precisely timed to occur in the post-molt stage of the molt cycle. We have identified differential expression patterns of several genes that are believed to be involved in biomineralization and sclerotization and propose possible regulatory mechanisms for these processes based on their expression profiles, such as the potential involvement of C-type lectin receptors and mannose binding protein in the regulation of calcification.
Resumo:
The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.
Resumo:
The possibility of applying two approximate methods for determining the salient features of response of undamped non-linear spring mass systems subjected to a step input, is examined. The results obtained on the basis of these approximate methods are compared with the exact results that are available for some particular types of spring characteristics. The extension of the approximate methods for non-linear systems with general polynomial restoring force characteristics is indicated.
Resumo:
Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.
Resumo:
This research was aimed at determining optimum Cu content for the alloy design of SUS 30411 austenitic steels having enhanced heat and corrosion resistance. Samples of the steel containing 1, 3, and 5 wt.% Cu were subjected to repeated heating and cooling to a temperature of 760 degrees C and to a maximum of 15 cycles. Hardness measurement and the corrosion behaviour in 1M NaCl solution were evaluated. The hardness increases with an increase in the number of heating cycles for the three compositions. The hardening response to the thermal cycles is however higher for the 1 wt.% Cu composition and decreases with an increase in the Cu wt.%. The SUS 30411 steel containing 3 wt.% Cu exhibited the least susceptibility to corrosion in the 1M NaCl solution irrespective of the number of heating cycles. The SUS 30411 steel containing 1 wt.% Cu was found to exhibit the highest susceptibility to corrosion for all heating cycles compared.
Resumo:
The present work describes the tensile flow and work hardening behavior of a high strength 7010 aluminum alloy by constitutive relations. The alloy has been hot rolled by three different cross-rolling schedules. Room temperature tensile properties have been evaluated as a function of tensile axis orientation in the as-hot rolled as well as peak aged conditions. It is found that both the Ludwigson and a generalized Voce-Bergstrom relation adequately describe the tensile flow behavior of the present alloy in all conditions compared to the Hollomon relation. The variation in the Ludwigson fitting parameter could be correlated well with the microstructural features and anisotropic contribution of strengthening precipitates in the as-rolled and peak aged conditions, respectively. The hardening rate and the saturation stress of the first Voce-Bergstrom parameter, on the other hand, depend mainly on the crystallographic texture of the specimens. It is further shown that for the peak aged specimens the uniform elongation (epsilon(u)) derived from the Ludwigson relation matches well with the measured epsilon(u) irrespective of processing and loading directions. However, the Ludwigson fit overestimates the epsilon(u) in case of the as-rolled specimens. The Hollomon fit, on the other hand, predicts well the measured epsilon(u), of the as-rolled specimens but severely underestimates the epsilon(u), for the peak aged specimens. Contrarily, both the relations significantly overestimate the UTS of the as-rolled and the peak aged specimens. The Voce-Bergstrom parameters define the slope of e Theta-sigma plots in the stage-III regime when the specimens show a classical linear decrease in hardening rate in stage-III. Further analysis of work hardening behavior throws some light on the effect of texture on the dislocation storage and dynamic recovery.
Resumo:
In this paper, we propose a multiple-input multiple-output (MIMO) receiver algorithm that exploits channel hardening that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes, where is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the matrix. We also propose a simple estimation scheme which directly obtains an estimate of (instead of an estimate of), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the channel hardening-exploiting message passing (CHEMP) receiver. The proposed CHEMP receiver achieves very good performance in large-scaleMIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes.
Resumo:
The influence of absorbed hydrogen on the mechanical behavior of a series of Ni-Nb-Zr amorphous metallic ribbons was investigated through nanoindentation experiments. It was revealed that the influence is significantly dependent on Zr content, that is, hydrogen induced softening in relatively low-Zr alloys, whereas hydrogen induced hardening in high-Zr alloys. The results are discussed in terms of the different roles of mobile and immobile hydrogen in the plastic deformation. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Martensite-ferrite microstructures were produced in four microalloyed steels A (Fe-0.44C-Cr-V), B (Fe-0.26C-Cr-V), C (Fe-0.34C-Cr-Ti-V), and D (Fe-0.23C-Cr-V) by intercritical annealing. SEM analysis reveals that steels A and C contained higher martensite fraction and finer ferrite when compared to steels B and D which contained coarser ferrite grains and lower martensite fraction. A network of martensite phase surrounding the ferrite grains was found in all the steels. Crystallographic texture was very weak in these steels as indicated by EBSD analysis. The steels contained negligible volume fraction of retained austenite (approx. 3-6%). TEM analysis revealed the presence of twinned and lath martensite in these steels along with ferrite. Precipitates (carbides and nitrides) of Ti and V of various shapes with few nanometers size were found, particularly in the microstructures of steel B. Work hardening behavior of these steels at ambient temperature was evaluated through modified Jaoul-Crussard analysis, and it was characterized by two stages due to presence of martensite and ferrite phases in their microstructure. Steel A displayed large work hardening among other steel compositions. Work hardening behavior of the steels at a warm working temperature of 540 A degrees C was characterized by a single stage due to the decomposition of martensite into ferrite and carbides at this temperature as indicated by SEM images of the steels after warm deformation.
Resumo:
Thermal desorption spectroscopy and nanoindentation techniques were employed to elucidate the key differences in the hydrogen (H) charging methods (electrochemical versus gaseous) and their consequences on the mechanical response of a low carbon steel. While electrochemical charging enhances the hardness, gaseous charging reduces it. This contrasting behavior is rationalized in terms of the dependency of the strength on the absorbed amount of H during charging and the H concentration gradient in the specimen. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.